
PolySpace® Products for Ada 5
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
PolySpace® Products for Ada User’s Guide
© COPYRIGHT 1999–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2008 Online Only Revised for Version 5.1 (Release 2008a)
October 2008 Online Only Revised for Version 5.2 (Release 2008b)
March 2009 Online Only Revised for Version 5.3 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction to PolySpace Products

1
Introduction to PolySpace Products 1-2
The Value of PolySpace Verification 1-2
How PolySpace Verification Works 1-4
Product Components . 1-5
Installing PolySpace Products . 1-6
Related Products . 1-6

PolySpace Documentation . 1-8
About this Guide . 1-8
Related Documentation . 1-8

Choosing How to Use PolySpace Software

2
How to Use This Chapter . 2-2

Applying PolySpace Verification to Your Development
Process . 2-5
Overview of the PolySpace Approach 2-5
Standard Development Process . 2-10
Rigorous Development Process: Introducing Tools and
Coding Rules . 2-14

A Quality/Qualification Approach . 2-16
Code Acceptance Criterion . 2-17
Choosing the Type of Verification You Want to Perform . . 2-18

iii

Setting Up a Verification Project

3
Creating a Project . 3-2
What Is a Project? . 3-2
Project Directories . 3-3
Opening PolySpace Launcher . 3-3
Specifying Default Directory . 3-6
Creating New Projects . 3-8
Opening Existing Projects . 3-9
Specifying Source Files . 3-10
Specifying Include Directories . 3-12
Specifying Results Directory . 3-14
Specifying Analysis Options . 3-15
Configuring Text and XML Editors 3-16
Saving the Project . 3-17

Emulating Your Runtime Environment

4
Setting Up a Target . 4-2
Target/Compiler Overview . 4-2
Specifying Target/Compilation Parameters 4-2
Predefined Target Processor Specifications (size of char, int,
float, double...) . 4-3

Verifying an Application Without a “Main” 4-6
Main Generator Overview . 4-6
Automatically Generating a Main . 4-6
Manually Generating a Main . 4-7
Example . 4-7

Using Pragma Assert to Set Data Ranges 4-8

iv Contents

Preparing Source Code for Verification

5
Stubbing . 5-2
Stubbing Overview . 5-2
Manual vs. Automatic Stubbing . 5-2
Automatic Stubbing . 5-5

Preparing Code for Variables . 5-7
Float Rounding . 5-7
Expansion of Sizes . 5-8
Volatile Variables . 5-8
Shared Variables . 5-10

Preparing Multitasking Code . 5-15
PolySpace Software Assumptions . 5-15
Scheduling Model . 5-16
Modelling Synchronous Tasks . 5-17
Interruptions and Asynchronous Events/Tasks 5-19
Are Interruptions Maskable or Preemptive by Default? . . . 5-21
Mailboxes . 5-22
Atomicity . 5-26
Priorities . 5-27

Running a Verification

6
Types of Verification . 6-2

Running Verifications on PolySpace Server 6-3
Starting Server Verification . 6-3
What Happens When You Run Verification 6-4
Managing Verification Jobs Using the PolySpace Queue
Manager . 6-5

Monitoring Progress of Server Verification 6-6
Viewing Verification Log File on Server 6-9
Stopping Server Verification Before It Completes 6-11

v

Removing Verification Jobs from Server Before They
Run . 6-12

Changing Order of Verification Jobs in Server Queue 6-13
Purging Server Queue . 6-13
Changing Queue Manager Password 6-15
Sharing Server Verifications Between Users 6-15

Running Verifications on PolySpace Client 6-19
Starting Verification on Client . 6-19
What Happens When You Run Verification 6-20
Monitoring the Progress of the Verification 6-21
Stopping Client Verification Before It Completes 6-22

Running Verifications from Command Line 6-24
Launching Verifications in Batch . 6-24
Managing Verifications in Batch . 6-24

Troubleshooting Verification Problems

7
Verification Process Failed Errors 7-2
Overview . 7-2
Hardware Does Not Meet Requirements 7-2
You Did Not Specify the Location of Included Files 7-2
PolySpace Software Cannot Find the Server 7-3
Limit on Assignments and Function Calls 7-4

Compile Errors . 7-6
Overview . 7-6
Examining the Compile Log . 7-6
Unit Verification . 7-8

Reducing Verification Time . 7-9
PolySpace Verification Duration . 7-9
An Ideal Application Size . 7-9
Why Should there be an Optimum Size? 7-10
Selecting a Subset of Code . 7-11
What are the Benefits of these Methods? 7-17

vi Contents

Reviewing Verification Results

8
Before You Review PolySpace Results 8-2
Overview: Understanding PolySpace Results 8-2
Why Gray Follows Red and Green Follows Orange 8-3
What is the Message and What does it Mean? 8-4
What is the Ada Explanation? . 8-5

Opening Verification Results . 8-8
Downloading Results from Server to Client 8-8
Opening Verification Results . 8-11
Exploring the Viewer Window . 8-11
Selecting Viewer Mode . 8-15
Setting Character Encoding Preferences 8-15

Reviewing Results in Assistant Mode 8-19
What Is Assistant Mode? . 8-19
Switching to Assistant Mode . 8-19
Selecting the Methodology and Criterion Level 8-20
Exploring Methodology for Ada . 8-21
Defining a Custom Methodology . 8-23
Reviewing Checks . 8-24

Reviewing Results in Expert Mode 8-26
What Is Expert Mode? . 8-26
Switching to Expert Mode . 8-26
Selecting a Check to Review . 8-26
Displaying the Calling Sequence . 8-28
Tracking Review Progress . 8-29
Making the Reviewed Column Visible 8-30
Filtering Checks . 8-33
Types of Filters . 8-33
Creating a Custom Filter . 8-35

Generating Reports of Verification Results 8-37

Using PolySpace Results . 8-41
Review Runtime Errors: Fix Red Errors 8-41
Review Dead Code Checks: Why Gray Code is
Interesting . 8-42

vii

Reviewing Orange: Automatic Methodology 8-44
Selective Orange Review: Finding the Maximum Number
of Bugs in One Hour . 8-46

Exhaustive Orange Review at Unit Phase 8-48
Exhaustive Orange Review at Integration Phase 8-49
Integration Bug Tracking . 8-51
How to Find Bugs in Unprotected Shared Data 8-51
Dataflow Verification . 8-52
Potential Side Effect of a Red Error 8-53
Checks on Procedure Calls with Default Parameters 8-54
_INIT_PROC Procedures . 8-56

Managing Orange Checks

9
Understanding Orange Checks . 9-2
What is an Orange Check? . 9-2
Sources of Orange Checks . 9-3
Determining Cause of Orange Checks 9-5

Reducing Orange Checks in Your Results 9-6
Options to Reduce Orange Checks . 9-6
Generic Objectives: A Balance Between Precision and
Verification Time . 9-7

Varying the Precision Level . 9-8
Applying Coding Rules to Reduce Orange Checks 9-9
Increase the Number of Red and Green Checks 9-10
Applying Function Constraints to Variables Via Stubs . . . 9-10
Tuning Advanced Parameters . 9-12
Describing Multitasking Behavior Properly 9-12

Reviewing Orange Checks . 9-14
Selective Orange Review . 9-14
Performing a Selective Orange Review 9-15
Exhaustive Orange Review . 9-16
Performing an Exhaustive Orange Review 9-17

viii Contents

Day to Day Use

10
PolySpace In One Click Overview 10-2

Using PolySpace In One Click . 10-3
PolySpace In One Click Workflow . 10-3
Setting the Active Project . 10-3
Launching Verification . 10-5
Using the Taskbar Icon . 10-9

Glossary

Index

ix

x Contents

1

Introduction to PolySpace
Products

• “Introduction to PolySpace Products” on page 1-2

• “PolySpace Documentation” on page 1-8

1 Introduction to PolySpace® Products

Introduction to PolySpace Products

In this section...

“The Value of PolySpace Verification” on page 1-2
“How PolySpace Verification Works” on page 1-4
“Product Components” on page 1-5
“Installing PolySpace Products” on page 1-6
“Related Products” on page 1-6

The Value of PolySpace Verification
PolySpace® products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed. PolySpace verification uses formal
methods not only to detect errors, but to prove mathematically that certain
classes of run-time errors do not exist.

PolySpace verification can help you to:

• “Ensure Software Reliability” on page 1-2

• “Decrease Development Time” on page 1-3

• “Improve the Development Process” on page 1-4

Ensure Software Reliability
PolySpace software ensures the reliability of your Ada applications by proving
code correctness and identifying run-time errors. Using advanced verification
techniques, PolySpace software performs an exhaustive verification of your
source code.

Because PolySpace software verifies all possible executions of your code, it
can identify code that:

• Never has an error

• Always has an error

• Is unreachable

1-2

Introduction to PolySpace® Products

• Might have an error

With this information, you can be confident that you know how much of your
code is run-time error free, and you can improve the reliability of your code by
fixing the errors.

Decrease Development Time
PolySpace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process, but using it during early coding
phases allows you to find errors when it is less costly to fix them.

You use PolySpace software to verify Ada source code before compile time.
To verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

A graphical user interface helps you to efficiently review verification results.
Results are color-coded:

• Green – Indicates code that never has an error.

• Red – Indicates code that always has an error.

• Gray – Indicates unreachable code.

• Orange – Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors. You will spend less time
debugging because you can see the exact location of an error in the source
code. After you fix errors, you can easily run the verification again.

Using PolySpace verification software helps you to use your time effectively.
Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

Reviewing the code that might have errors (orange code) can be
time-consuming, but PolySpace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

1-3

1 Introduction to PolySpace® Products

Improve the Development Process
PolySpace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

PolySpace verification software supports code verification throughout the
development process:

• An individual developer can find and fix run-time errors during the initial
coding phase.

• Quality assurance can check overall reliability of an application.

• Managers can monitor application reliability by generating reports from
the verification results.

How PolySpace Verification Works
PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program without
actually executing it. This differs significantly from other techniques, such
as runtime debugging, in that the verification it provides is not based on a
given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

What is Static Verification
Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. However, most
Static Verification tools only verify the complexity of the software, in a search
for constructs which may be potentially dangerous. PolySpace verification
provides deep-level verification identifying almost all runtime errors and
possible access conflicts on global shared data.

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)

1-4

Introduction to PolySpace® Products

{ tab[i] = foo(i);
}

To check that the variable ’i’ never overflows the range of ’tab’ a traditional
approach would be to enumerate each possible value of ’i’. One thousand
checks would be needed.

Using the static verification approach, the variable ’i’ is modelled by its
variation domain. For instance the model of ’i’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that ’i’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of ’i’ is smaller than the range of ’tab’. Only one check is required
to establish that - and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
works by performing upper approximations. In other words, the computed
variation domain of any program variable is always a superset of its actual
variation domain. The direct consequence is that no runtime error (RTE) item
to be checked can be missed by PolySpace.

Product Components
The PolySpace products for verifying Ada code are:

• “PolySpace® Client for Ada Software” on page 1-6

• “PolySpace® Server for Ada Software” on page 1-6

1-5

1 Introduction to PolySpace® Products

PolySpace Client for Ada Software
PolySpace Client software is the management and visualization tool of
PolySpace products. You use the client to submit jobs for execution by
PolySpace Server, and to review verification results. The PolySpace Client
software includes the Launcher, Viewer, and Report Generator features.

PolySpace client software is typically installed on developer workstations that
will send verification jobs to the PolySpace server.

PolySpace Server for Ada Software
PolySpace Server software is the computational engine of PolySpace products.
You use it to run jobs posted by PolySpace Clients, and to manage multiple
servers and queues. The PolySpace Server software includes the Remote
Launcher, Spooler, Report Generator, and HTML Generator features.

PolySpace Server software is typically installed on machines dedicated to
PolySpace software that will receive verifications coming from PolySpace
clients.

Installing PolySpace Products
For information on installing and licensing PolySpace products, refer to the
PolySpace Installation Guide.

Related Products

• “PolySpace Products for Verifying C and C++ Code” on page 1-6

• “PolySpace Products for Linking to Models” on page 1-7

PolySpace Products for Verifying C and C++ Code
For information about PolySpace products that verify C and C++ code, see
the following:

http://www.mathworks.com/products/polyspaceclientc/

http://www.mathworks.com/products/polyspaceserverc/

1-6

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/

Introduction to PolySpace® Products

PolySpace Products for Linking to Models
For information about PolySpace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

1-7

http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to PolySpace® Products

PolySpace Documentation

In this section...

“About this Guide” on page 1-8
“Related Documentation” on page 1-8

About this Guide
This document describes how to use PolySpace software to verify Ada code,
and provides detailed procedures for common tasks. It covers both PolySpace®
Client™ for Ada and PolySpace® Server™ for Ada products.

This guide is intended for both novice and experienced users.

Note This document covers both the Ada83 and Ada95 languages.
References are simply made to Ada throughout the document. When the
document invokes a polyspace-ada command, you may wish to refer to the
polyspace-ada95 command with the same characteristics.

Related Documentation
In addition to this guide, the following related documents are shipped with
the software:

• PolySpace Products for Ada Getting Started Guide – Provides a
basic workflow and step-by-step procedures for verifying Ada code using
PolySpace software, to help you quickly learn how to use the software.

• PolySpace Products for Ada Reference Guide – Provides detailed
descriptions of all PolySpace options, as well as all checks reported in the
PolySpace results.

• PolySpace Installation Guide – Describes how to install and license
PolySpace products.

• PolySpace Release Notes – Describes new features, bug fixes, and
upgrade issues.

1-8

PolySpace Documentation

You can access these guides from the Help menu, or by or clicking the Help
icon in the PolySpace window.

To access the online documentation for PolySpace products, go to:

/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

The MathWorks Online
For additional information and support, see:

www.mathworks.com/products/polyspace

1-9

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

1 Introduction to PolySpace® Products

1-10

2

Choosing How to Use
PolySpace Software

• “How to Use This Chapter” on page 2-2

• “Applying PolySpace Verification to Your Development Process” on page 2-5

2 Choosing How to Use PolySpace® Software

How to Use This Chapter
This chapter is designed for Project managers, quality managers, and
developers who want to integrate PolySpace verification into their project
development cycle. It explains how to apply PolySpace verification to each
phase of the typical project lifecycle.

PolySpace verification supports both productivity and quality, but there is
always a balance between these two goals. Generally, the criticality of your
application determines your quality model — the balance between them.

This chapter assumes that your primary goal is to achieve maximum
productivity with no quality defects. The document describes how to use
PolySpace verification to achieve this goal at each phase of the development
cycle. You must asses the costs of implementing each recommendation
yourself, given your own quality model.

2-2

How to Use This Chapter

This guide suggests answers to the following questions:

2-3

2 Choosing How to Use PolySpace® Software

2-4

Applying PolySpace® Verification to Your Development Process

Applying PolySpace Verification to Your Development
Process

In this section...

“Overview of the PolySpace Approach” on page 2-5
“Standard Development Process” on page 2-10
“Rigorous Development Process: Introducing Tools and Coding Rules” on
page 2-14
“A Quality/Qualification Approach” on page 2-16
“Code Acceptance Criterion” on page 2-17
“Choosing the Type of Verification You Want to Perform” on page 2-18

Overview of the PolySpace Approach
PolySpace verification supports two objectives at the same time:

• Reducing the cost of testing and validation

• Improving software quality

You can use PolySpace verification in different ways depending on the your
development context. The primary difference being how you exploit the
results. The following diagrams summarize the different approaches.

Note This section does not attempt to compare the cost of certification
processes, or of development processes with or without coding rules. The
graphs compare the costs of typical processes with and without PolySpace
software.

When No Coding Rules Are Adopted
During coding, there are two recommended approaches:

2-5

2 Choosing How to Use PolySpace® Software

Note The sentence in previous figure about “file by file analysis” needs to be
understood as a “package by package verification”. Indeed, most of the time
each package is developed in a file.

The first approach is to focus on red and gray results only — fix the red bugs,
and check the dead code for abnormalities.

The second approach performs these activities, and adds a partial review of
the orange warnings. The goal is to find as many bugs as possible in a limited
amount of time. This approach finds more bugs, and therefore improves the
overall quality of the software. It does involve more effort, but the amount of
time spent to find each bug remains very small.

Note Using PolySpace verification on a single package is efficient. Even
though the verification has no knowledge of the file context, experience shows
that 50% of bugs detected by PolySpace verification can be found locally.

2-6

Applying PolySpace® Verification to Your Development Process

This symbol is used to indicate that when a team has
successfully implemented one approach, they can migrate to a more
demanding (and more fruitful) one. This migration may not be desirable — it
depends on the context of the project.

Then, after coding, before testing activity:

Again, the first approach is to use only the red and gray results — fix the
red bugs, and check the dead code.

The second approach performs these activities, and adds a partial review of
the orange warnings and of the orange shared data.

When Coding Rules Have Been Adopted
The main difference between this process and the previous process is in
respect to the cost of bug detection. When PolySpace verification is used in
conjunction with coding rules, the costs of bug detection are much lower.

During coding, there are three ways to use PolySpace verification:

2-7

2 Choosing How to Use PolySpace® Software

Compared to the previous situation (without coding rules), there is an
additional possibility. Instead of reviewing only certain orange warnings in a
file, you can check all of them systematically. This is possible because when
the right coding rules are respected, there are very few orange checks in
a file. Therefore, checking all orange warnings can be very fruitful. A large
proportion of those anomalies require some correction to the code, with some
users reporting up to 50%.

Then, after coding, before the testing activity:

2-8

Applying PolySpace® Verification to Your Development Process

Note It is also possible to migrate from a selective to an exhaustive orange
review when performing an integration verification, but this activity is very
costly.

In a Certification Context
In a certification context“A Quality/Qualification Approach” on page 2-16, a
“quality/qualification” approach where PolySpace verification replaces an
existing activity. In this case quality is already high and maybe at a “zero
defects” level, but PolySpace verification will reduce the cost of achieving such
quality. In this context, PolySpace verification can replace the traditional
time consuming control and data flow verification, as well as shared data
conflict detection.

As an Acceptance Tool
The fourth and last approach implies the use of PolySpace verification as an
acceptance tool, or as a method of meeting an acceptance criterion.

2-9

2 Choosing How to Use PolySpace® Software

Standard Development Process

Overview
This approach is mainly for consideration by a project manager rather than a
quality manager. It aims to improve productivity rather than to prove the
quality of the application being analyzed.

The Software Development Process
This section describes how to introduce PolySpace verification to a standard
software development process. For instance,

• In Ada, no unit test tools or coverage tools are used: functional tests are
performed just after coding

• In C and C++, either no coding rules are present or they are not always
followed.

The figure below illustrates the revised process, with PolySpace verification
introduced in the tool chain. It will be used just before functional testing.

The Objective of Using PolySpace Verification
PolySpace verification will be used to improve the software quality and
productivity. It will help the developer to find and fix bugs much quicker than
the existing process. It will also improve the software quality by finding bugs
which would otherwise be likely to remain in the software after delivery.

It does not prove the robustness of the code because the prime objective is to
deliver code of at least similar quality to before, but to ensure that code is

2-10

Applying PolySpace® Verification to Your Development Process

produced in a predictable time frame with controlled and minimized delay
and costs. Another approach for this purpose is described in the next section.

The PolySpace Approach
The way forward here is for PolySpace products to be applied by developers
or testers on a file-by-file (package-by-package) verification basis. The users
will use the default PolySpace options, the most prominent feature of
which is the automatically generated “main” function. This main will call
all unused procedures and functions with full range parameters. The users
will be required to fix red errors and examine gray code, and they will also
do a selective orange review.

Cost/Benefits of a Selective Orange Review

This selective orange review can be applied on specific Runtime Error
categories, such as “Out of Bound Array Index”, or on all error categories.
This depends on each individual developers coding style.

It is true that with this approach some bugs might remain in the unchecked
oranges, but it represents a significant move forward from the initial position.
Coding rules would help further if more improvement is sought.

2-11

2 Choosing How to Use PolySpace® Software

A Complementary Approach
A second approach is also possible which, unlike the first, focuses only on an
increase in quality. If coding rules are applied, this second approach will
turn into a cheap and productive one as described by the second arrow on
the illustration.

Integration tests are also possible at this stage. This verification will be
performed by PolySpace software on larger modules, and the orange review
will be focused on orange Runtime errors which were not examined after
the file-by-file verification.

For instance, if the project construction is such that scalar overflows can only
be reviewed at integration phase, then

• The user will ignore orange overflows with PolySpace Client when
performing package-by-package verification.

• He will examine them with PolySpace Server.

Integration with Configuration Management Tools
PolySpace verification can also be used by project managers to establish and
test for transition criteria to proceed to file check-in

• Daily check-in— PolySpace verification is applied to the file(s) currently
under development. Compilation must complete without the permissive
option.

• Pre-unit test check-in — PolySpace verification is applied to the file(s)
currently under development.

• Pre-integration test check-in — PolySpace verification is applied to
the whole project until compilation can complete without the permissive
option. This stage will differ from the daily check-in activity because link
errors will be highlighted here.

• Pre-build for integration test check-in — PolySpace verification is
applied to the whole project, with all multitasking aspects accounted for
as appropriate.

• Pre-peer review check-in — PolySpace verification is applied to the
whole project, with all multitasking aspects accounted for as appropriate.

2-12

Applying PolySpace® Verification to Your Development Process

For each check-in activity mentioned above, the transition criterion could be:
“No bug found within the allocated time defined by the process”. For instance,
if the process defines that 20 minutes should be dedicated to a selective
review, the criterion could be: “no bug found during these 20 minutes”.

Costs and Benefits
Using PolySpace to find unit/local bugs in this way will both reduce the cost
of the software and improve the quality:

• Red checks and bugs in gray checks. The number of bugs found thanks to
these colors can vary from one user to another, but experience shows that
on average, around 40 percent of verifications will reveal one or more red
errors and/or will reveal bugs in gray code.

• Orange checks. Experience suggests that the time needed to find one bug
per file varies from 5 minutes to 1 hour, and is typically around 30 minutes.
This represents an average of two minutes per orange check review, and
a total of 20 orange checks per package in Ada and 60 orange checks per
file in C or C++.

With this approach, using PolySpace verification to find integration bugs
will increase the quality, but at a higher usage cost:

• 75% of bugs are local in this type of code— the selective orange review
at integration phase reveals a of integration bugs, and the rest () of local
bugs. Finding real integration bugs might require another process which
requires coding rules to be efficient.

• Setup time — the time needed to setup the verification can be higher due
to a lack of coding rules. Code modifications might be needed. Most of these
modifications cannot be automatic without changes in the process.

• Anomalies and complexity — In this configuration, any particular file
will receive more orange checks (about twice as many). These oranges are
likely to be anomalies, and will make the orange check review more time
consuming.

• An exhaustive orange review can take 25 man-days for a 50,000
line project — This would represent the effort where the aspiration is for
bug free software, assuming that a 50,000 line application contains about
3,000 orange checks

2-13

2 Choosing How to Use PolySpace® Software

Rigorous Development Process: Introducing Tools
and Coding Rules

Overview
This is of interest for both project and quality managers, who are likely to be
interested in this approach.

The Software Development Process
This section describes how to use PolySpace verification within a development
process. In Ada, no unit test tools or coverage tools are used; instead,
functional tests are performed just after coding.

The picture below describes the new process, with PolySpace verification
introduced into the tool chain. It will be used just before functional testing.

PolySpace verification will be used to increase both the software quality and
its productivity.

The PolySpace Approach
Use PolySpace on a file by file verification basis.

• The “main” used to analyze each file is very often automatically
generated by the project, and not by PolySpace (unlike the standard
approach).

• Initialization ranges should be applied to input data. For instance, if a
variable “x” is read by functions in the file, and if x can be initialized to any

2-14

Applying PolySpace® Verification to Your Development Process

value between 1 and 10, this information should be included as part of
the verification.

• [Optional] Some properties of output variables might be checked. For
instance, if a variable “y” is returned by a function in the file and should
always be returned with a value in the range 1 to 100, then PolySpace can
flag instances where that range of values might be breached.

• Red errors will be fixed and gray code examined, and an exhaustive orange
review will be completed.

• The usage of permissive options is not advisable at this stage.

Note The distinguishing feature for this approach as compared with the
standard approach is that the orange check review is exhaustive here.

A Complementary Approach
A second approach is also possible. Use PolySpace at integration phase to
track integration bugs, and review:

• Red and gray integration checks;

• The remaining orange checks with a selective review: Integration bug
tracking.

Costs and Benefits
With this approach, using PolySpace to find bugs will typically provide the
following benefits

• 3-5 orange checks per file, 3 gray checks per file yielding an average of 1
bug per file. Typically, 2 of these oranges might represent the same bug,
and another might represent an anomaly.

• An average of 2 verifications by PolySpace per file is typical before the file
can be checked-in to the configuration management system.

• The average verification time is about 15 minutes.

2-15

2 Choosing How to Use PolySpace® Software

Note If the development process includes data rules which determine how
the data flow are designed, the benefits might even be higher. The data
rules would implicitly reduce the potential for PolySpace to find integration
bugs.

With this approach, using PolySpace verification to find integration bugs
might bring the following results. On a typical 50,000 line project:

• A selective orange check review might reveal one integration bug
per hour of orange code review and takes about after 6 hours, which
long enough to review the main orange points throughout the whole
application. This represents a step towards an exhaustive orange check
review. Spending more time is unlikely to be efficient, and wont guarantee
that no bugs remain.

• An exhaustive orange review takes between 4 and 6 days, given that a
50,000 lines of code application might contain about 400-800 orange checks.

A Quality/Qualification Approach

Overview
Quality managers are likely to be interested in this approach.

The Software Development Process
This section describes how to use PolySpace verification within a process which
includes coding and data rules. Such a process is typical of a qualification
environment, with existing activities which must be performed. Before the
introduction of PolySpace verification, they will have been performed by hand,
with classical testing methods, or using previous generation tools. PolySpace
verification will replace these activities, and reduce the cost of the process.

PolySpace verification is not intended to improve the quality which is already
at the desired level. It will complete the same tasks more efficiently, bringing
improved productivity.

2-16

Applying PolySpace® Verification to Your Development Process

The Objective of Using PolySpace Verification
PolySpace verification will be used to increase the productivity on existing
activities, such as

• Data and control flow verification

• Shared data detection

• Robustness unit tests.

The PolySpace Approach

• For data and control flow verification and shared data detection, PolySpace
verification can be used on the whole application or on a subsection of the
application.

• For robustness unit tests (as opposed to functional unit tests), PolySpace
verification might be used in the same way as the method applied to the
Rigorous development process.

Costs and Benefits
The replacement of these activities can lead to a significant cost reduction.
For instance, the time spent on data and control flow verification can drop
from 3 months to 2 weeks.

Quality will also become much more consistent since a much greater part
of the process will be automated. PolySpace tools are equally efficient on a
Friday afternoon and on a Tuesday morning!

Code Acceptance Criterion

Overview
This is likely to be of interest for a quality manager in a company which is
outsourcing software development, and who wishes to impose acceptance
criteria for the code.

2-17

2 Choosing How to Use PolySpace® Software

The Software Development Process
This section describes how to define transition criteria for intermediate or
final deliveries.

The Objective of Using PolySpace Verification
The objective is to control and evaluate the safety of an application. The
means for doing so could vary from no red errors to exhaustive oranges review.

The PolySpace Approach
The example list of acceptance criteria below shows increasingly stringent
tests, any or all of which may be adopted.

• No compilation errors

• No compilation warning errors

• No red code sections

• No unjustified gray code section

• A selective/exhaustive orange review according to the development process

- 20% orange code sections reviewed or a time base threshold (described in
the previous sections)

- 100% orange code sections reviewed

• 20% concurrent access graph reviewed

• 100% concurrent access graph reviewed

Choosing the Type of Verification You Want to
Perform
Finally, before you start using PolySpace products, you must decide what type
of software verification you want to perform. There are two approaches to
code verification that result in slightly different workflows:

• Robustness Verification – Prove that the software works under all
conditions, including “abnormal” conditions. This can be thought of as
“worst case” analysis.

2-18

Applying PolySpace® Verification to Your Development Process

• Contextual Verification – Prove that the software works under normal
working conditions. This can limit the amount of analysis that needs to be
done by providing the software with the ranges of various parameters, so
that the code only needs to be verified within these ranges.

By default, PolySpace software assumes you want to perform robustness
verification (full range). However, this approach can lead to many orange
checks in your results.

When performing contextual verification, you can use several PolySpace
options to reduce the number of orange checks. You can use pragma assert in
your code to limit verification to the data ranges imposed by the environment
in which the software will run. You also can create a very detailed main
generator.

2-19

2 Choosing How to Use PolySpace® Software

2-20

3

Setting Up a Verification
Project

3 Setting Up a Verification Project

Creating a Project

In this section...

“What Is a Project?” on page 3-2
“Project Directories” on page 3-3
“Opening PolySpace Launcher” on page 3-3
“Specifying Default Directory” on page 3-6
“Creating New Projects” on page 3-8
“Opening Existing Projects” on page 3-9
“Specifying Source Files” on page 3-10
“Specifying Include Directories” on page 3-12
“Specifying Results Directory” on page 3-14
“Specifying Analysis Options” on page 3-15
“Configuring Text and XML Editors” on page 3-16
“Saving the Project” on page 3-17

What Is a Project?
In PolySpace software, a project is a named set of parameters for a verification
of your software project’s source files. You must have a project before you can
run a PolySpace verification of your source code.

A project includes:

• The location of source files and include directories

• The location of a directory for verification results

• Analysis options

You can create your own project or use an existing project. You create and
modify a project using the Launcher graphical user interface.

A project file has one of the following file types:

3-2

Creating a Project

Project Type File Extension Description

configuration cfg Required for running a
verification. Does not
include generic target
processors.

PolySpace Project
Model

ppm For populating a project
with analysis options,
including generic target
processors.

Desktop dsk In earlier versions of
PolySpace software, for
running a verification
on a client computer.

Project Directories
Before you begin verifying your code with PolySpace software, you must know
the location of your Ada source package and any other specifications upon
which it may depend either directly or indirectly. You must also know where
you want to store the verification results.

To simplify the location of your files, you may want to create a project
directory, and then in that directory, create separate directories for the source
files, include files, and results. For example:

polyspace_project/

• sources

• includes

• results

Opening PolySpace Launcher
You use the PolySpace Launcher to create a project and start a verification.

To open the PolySpace Launcher:

3-3

3 Setting Up a Verification Project

1 Double-click the PolySpace Launcher icon.

2 If you have both PolySpace for C/C++ and PolySpace for Ada products on
your system, the PolySpace Language Selection dialog box will appear.

Select PolySpace for Ada, then lick OK.

The PolySpace Launcher window appears:

3-4

Creating a Project

Specify
source files

Specify include
directories

View log

Monitor
progress

Specify
analysis
options

Control
verification

The Launcher window has three main sections.

3-5

3 Setting Up a Verification Project

Use this
section...

For...

Upper-left Specifying:
• Source files

• Include directories

• Results directory
Upper-right Specifying analysis options
Lower Controlling and monitoring a verification

You can resize or hide any of these sections. You learn more about the
Launcher window later in this tutorial.

Specifying Default Directory
PolySpace software allows you to specify the default directory that appears in
directory browsers in dialog boxes. If you do not change the default directory,
the default directory is the installation directory. hanging the default
directory to the project directory makes it easier for you to locate and specify
source files and include directories in dialog boxes.

To change the default directory to the project directory:

1 Select Edit > Preferences.

The Preferences dialog box appears.

3-6

Creating a Project

2 Select the Default directory tab.

3-7

3 Setting Up a Verification Project

3 Select Always use this specific folder if it is not already selected.

4 Enter or navigate to the project directory you want to use.

5 lick OK to apply the changes and close the dialog box.

Creating New Projects
You must have a project, saved with file type .cfg, to run a verification.

To create a new project:

1 Select File > New Project.

The Choose the language dialog box appears:

3-8

Creating a Project

2 Select your code type, then click OK.

The default project name, New_Project, appears in the title bar.

In the Analysis options section, the General options node expands with
default project identification information and options.

Opening Existing Projects
To open an existing project:

3-9

3 Setting Up a Verification Project

1 Select File > Open Project.

The Please select a file dialog box appears.

2 Select the project you want to open, then click OK.

The selected project opens in the Launcher.

Specifying Source Files
To specify the source files for your project:

1 lick the green plus sign button in the upper right of the files section of
the Launcher window.

The Please select a file dialog box appears.

3-10

Creating a Project

2 In the Look in field, navigate to your project directory containing your
source files.

3 Select the files you want to verify, then click the green down arrow button
in the Source files section.

The path of each source files appear in the source files list.

Tip You can also drag directory and file names from an open directory
directly to the source files list or include list.

3-11

3 Setting Up a Verification Project

4 lick OK to apply the changes and close the dialog box.

The source files you selected appear in the files section in the upper left of
the Launcher window.

Specifying Include Directories
To specify the include directories for the project:

1 lick the green plus sign button in the upper right of the files section of
the Launcher window.

3-12

Creating a Project

The Please select a file dialog box appears.

2 In the Look in field, navigate to your project directory.

3 Select the directory containing the include files for your project, then click
the green down arrow button in the Directories to include section.

The path for each include directory appears in the source files list.

4 lick OK to apply the changes and close the dialog box.

3-13

3 Setting Up a Verification Project

The include directories you selected appear in the Include directories
section on the left side of the Launcher window.

Specifying Results Directory
To specify the results directory for the project:

1 In the Results Directory section of the Launcher window, specify the
full path of the directory that will contain your verification results. For
example: :\polyspace_project\results.

3-14

Creating a Project

The files section of the Launcher window now looks like:

Specifying Analysis Options
The analysis options in the upper-right section of the Launcher window
include identification information and parameters that PolySpace software
uses during the verification process.

To specify General parameters for your project:

1 In the Analysis options section of the Launcher window, expand General.

3-15

3 Setting Up a Verification Project

2 The General options appear.

3 Specify the appropriate general parameters for your project.

For detailed information about specific analysis options, see “Option
Descriptions”in the PolySpace Products for Ada Reference.

Configuring Text and XML Editors
Before you run a verification, you should configure your text and XML editors
in the Viewer. Configuring text and XML editors in the Viewer allows you
to view source files directly from the Viewer logs.

To configure your text and .XML editors:

1 Select Edit > Preferences.

The Preferences dialog box opens.

2 Select the Editors tab.

3-16

Creating a Project

The Editors tab opens.

3 Specify a Text editor to use to view source files from the Viewer logs.

4 lick OK.

Saving the Project
To save the project:

1 Select File > Save project. The Save the project as dialog box appears.

3-17

3 Setting Up a Verification Project

2 In Look in, select your project directory.

3 In Session identifier, enter a name for your project.

4 lick OK to save the project and close the dialog box.

3-18

4

Emulating Your Runtime
Environment

• “Setting Up a Target” on page 4-2

• “Verifying an Application Without a “Main”” on page 4-6

• “Using Pragma Assert to Set Data Ranges” on page 4-8

4 Emulating Your Runtime Environment

Setting Up a Target

In this section...

“Target/Compiler Overview” on page 4-2
“Specifying Target/Compilation Parameters” on page 4-2
“Predefined Target Processor Specifications (size of char, int, float,
double...)” on page 4-3

Target/Compiler Overview
Many applications are designed to run on specific target CPUs and operating
systems. The type of CPU determines many data characteristics, such as
data sizes and addressing. These factors can affect whether errors (such as
overflows) will occur.

Since some run-time errors are dependent on the target CPU and operating
system, you must specify the type of CPU and operating system used in the
target environment before running a verification.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Specifying Target/Compilation Parameters
The Target/Compilation options in the Launcher allow you to specify the
target processor and operating system for your application.

To specify target parameters for your project:

1 In the Analysis options section of the Launcher window, expand
Target/Compilation.

2 The Target/Compilation options appear.

4-2

Setting Up a Target

3 Specify the appropriate parameters for your target CPU and operating
system.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for Ada Reference.

Predefined Target Processor Specifications (size of
char, int, float, double...)
PolySpace software supports many commonly used processors, as listed in the
table below. To specify one of the predefined processors, select it from the
Target processor type drop-down list.

If your processor is not listed, you can specify a similar processor that shares
the same characteristics.

PolySpace supports some of the most commonly used processors, as listed in
the table below. Even if the processor used in a target environment is not
explicitly mentioned, it is safe to specify one from the table which shares the
same listed characteristics.

Target sparc m68k
ColdFire

1750a powerpc
32bits

powerpc
64bits

I386

Character 8 8 16 8 8 8

4-3

4 Emulating Your Runtime Environment

Target sparc m68k
ColdFire

1750a powerpc
32bits

powerpc
64bits

I386

short_integer 16 16 16 16 16 16
Integer 32 32 16 32 32 32

long_integer 32 32 32 32 64 32
long_long_integer 64 64 64 64 64 64

short_float 32 32 32 32 32 32
Float 32 32 32 32 32 32
long_float 64 64 48 64 64 64

long_long_float 64 64 48 64 64 64

• Target powerpc32bits: The largest default alignment of basic types within
record/array is 64.

• Target powerpc64bits: The largest default alignment of basic types within
record/array is 64.

• Target i386: The largest default alignment of basic types within
record/array is 32.

To identify a target processor’s characteristics, compile and run the program
below. If none of the characteristics described above match, please contact
MathWorks Technical Support (http://www.mathworks.com/support).

with TEXT_IO;
procedure TEMP is
type T_
Ptr is access integer;
Ptr :T_Ptr;
begin
TEXT_IO.PUT_LINE (Integer'Image (Character'Size));
TEXT_IO.PUT_LINE (Integer'Image (Short_Integer'Size));
TEXT_IO.PUT_LINE (Integer'Image (Integer'Size));
TEXT_IO.PUT_LINE (Integer'Image (Long_Integer'Size));
-- TEXT _IO.PUT_LINE (Integer'Image(Long_Long_Integer'Size));
TEXT_IO.PUT_LINE (Integer'Image (Float'Size));

4-4

Setting Up a Target

-- TEXT _IO.PUT_LINE (Integer'Image(D_Float'Size));
TEXT_IO.PUT_LINE (Integer'Image (Long_Float'Size));
TEXT_IO.PUT_LINE (Integer'Image (Long_Long_Float'Size));
TEXT_IO.PUT_LINE(Integer'Image (T_Ptr'Size));
end TEMP;

4-5

4 Emulating Your Runtime Environment

Verifying an Application Without a “Main”

In this section...

“Main Generator Overview” on page 4-6
“Automatically Generating a Main” on page 4-6
“Manually Generating a Main” on page 4-7
“Example” on page 4-7

Main Generator Overview
When your application is a function library (API) or a single module, you must
provide a main that calls each non-called procedure within the code, because
of the execution model used by PolySpace. You can either manually provide a
main, or have PolySpace generate one for you automatically.

When you run a verification on PolySpace Client for Ada software, the main
is always generated. When you run a verification on PolySpace Server for
Ada software, you can choose automatically generate a main by selecting the
Generate a main (-main-generator) option.

Automatically Generating a Main
You can choose to automatically generate a main by selecting the Generate a
main (-main-generator) option. The -main-generator option will create
automatically a procedure which calls every non called procedure within the
code, avoiding for instance to create manually a main.

• PolySpace Client for Ada software – By default, the software
automatically generates a main. You can choose to manually generate a
main using the -main option.

• PolySpace Server for Ada software – The -main option is set by
default. You can choose to automatically generate a main using the
-main-generator option.

4-6

Verifying an Application Without a “Main”

Manually Generating a Main
Manually generating a main is often preferable to an automatically generated
main, because it allows you to provide a more accurate model of the calling
sequence to be generated.

There are three steps involved in manually defining the main.

1 Identify the API functions and extract their declaration.

2 Create a main containing declarations of a volatile variable for each type
that is mentioned in the function prototypes.

3 Create a loop with a volatile end condition.

4 Inside this loop, create a switch block with a volatile condition.

5 For each API function, create a case branch that calls the function using
the volatile variable parameters you created.

Example

The API spec are:
function func1(x in integer) return integer;
procedure func2(x in out float, y in integer);
The main you'll have to create is the following :
procedure main is
a,b,c,d: integer;
e,f: float;

pragma volatile (a);
pragma volatile (e);
-- We need an integer and float variable as a function parameter
begin
loop

f := e;
c:=a;
d:=a;

if (a = 1) then b:= func1(c); end if;
if (a = 1) then func2(e,d); end if;

end loop
end main;

4-7

4 Emulating Your Runtime Environment

Using Pragma Assert to Set Data Ranges
You can use the construct 'pragma assert' within your code to inform
PolySpace of constraints imposed by the environment in which the software
will run. A pragma assert function is:

pragma assert(<integer expression>);

If <integer expression> evaluates to zero, then the program is assumed
to be terminated, therefore there is a “real” runtime error. This is why
PolySpace will produce checks for them. The behavior matches the one
exhibited during execution, because all execution paths for unsatisfied
conditions are truncated (red and then gray). Thus it can be assumed
that any verification performed downstream of the assert uses value ranges
which satisfy the assert conditions.

It is therefore possible to use the construct 'pragma assert' in a procedure
to inform PolySpace of constraints in the environment in which the software
will be embedded. User assertions can be used to describe the physical
properties of the environment such as:

• the maximum and minimum speed limit (a car never goes faster than 200
miles per hour or slower than 0),

• the maximum duration of software exploitation (five years for a satellite
and one hour for its launcher),

• and so on ...

Example

procedure main is
counter: integer;
-- counter is not initialized
random: integer;
pragma volatile (random);

begin
counter:= random;
-- counter~ [-2^31, 2^31-1]
pragma assert (counter < 1000);
pragma assert (counter > 100);

end;

4-8

Using Pragma Assert to Set Data Ranges

end main;

Both assertions are orange because the conditions may or may not be fulfilled.
But, from then on, counter ~ [101, 999] because any execution paths that does
not meet the conditions are halted.

4-9

4 Emulating Your Runtime Environment

4-10

5

Preparing Source Code for
Verification

• “Stubbing” on page 5-2

• “Preparing Code for Variables” on page 5-7

• “Preparing Multitasking Code” on page 5-15

5 Preparing Source Code for Verification

Stubbing

In this section...

“Stubbing Overview” on page 5-2
“Manual vs. Automatic Stubbing” on page 5-2
“Automatic Stubbing” on page 5-5

Stubbing Overview
A function stub is a small piece of code that emulates the behavior of a
missing function. Stubbing is useful because it allows you to verify code before
all functions have been developed.

Manual vs. Automatic Stubbing
The approach you take to stubbing can have a significant influence on the
speed and precision of your verification.

There are two types of stubs in PolySpace verification:

• Automatic stubs – When you attempt to verify code that calls an unknown
function, the software automatically creates a stub function based on the
function’s prototype (the function declaration). Automatic stubs generally
do not provide insight into the behavior of the function.

• Manual stubs – You create these stub functions to emulate the behavior of
the missing functions, and manually include them in the verification with
the rest of the source code.

Only advanced users should consider manual stubbing. PolySpace can
automatically stub every missing function or procedure, leading to an efficient
verification with a low loss in precision. However, in some cases you may
want to manually stub functions instead. For example, when:

• Automatic stubbing does not provide an adequate representation of the
code it represents— both in regards to missing functions and assembly
instructions.

5-2

Stubbing

• The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

• You want to improve the selectivity and speed of the verification.

• You want to gain precision by restricting return values generated by
automatic stubs.

• You need to deal with a function that writes to global variables.

Deciding which Stub Functions to Provide
Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

Consider procedure_to_stub, If it represents:

• a timing constraint, such as a timer set/reset, a task activation, a delay or
a counter of ticks between two precise locations in the code, then you can
stub it to an empty action (begin null; end;). PolySpace has no timing
constraints and already takes into account all possible scheduling and
interleaving and enhances all timing constraints: there is no need to stub
functions that set or reset a timer. Simply declare the variable representing
time as volatile.

• an I/O access: to a hardware port, a sensor, read/write of a file, read of an
eeprom, write to a volatile variable, then: there is no need to stub a write
access or simply stub a write access to an empty action (see above), stub
read accesses as "I read all possible values (volatile)".

• a write to a global variable, you may need to consider which procedures or
function write to it and why: do not stub the concerned procedure_to_stub if:

- this variable is volatile;

- this variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically started.

write a procedure_to_stub by hand if this variable is a regular variable read
by other procedures or functions.

5-3

5 Preparing Source Code for Verification

• a read from a global variable: if you want PolySpace to detect that it is a
shared variable, you need to stub a read access as well. This is easy to
achieve by copying the value into a local variable.

Generally speaking, follow the data flow and remember that:

• PolySpace only cares about the Ada code which is provided.

• PolySpace does not need to be informed of timing constraints because all
possible sequencing is taken into account.

Example

This example shows a header for a missing function (which might occur if, for
example, the code is an incomplete subset or a project). The missing function
copies the value of the src parameter to dest, so there would be a division
by zero (RTE) at run time.

procedure a_missing_function
(dest: in out integer,
src : in integer);

procedure test is
a: integer;
b: integer;

begin
a: = 1;
b: = 0;
a_missing_function(a,b);
b:= 1 / a;
-- "/" with the default stubbing

end;

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0).

If the function was commented out, then the division would be green.

A red division could only be achieved with a manual stub.

5-4

Stubbing

This example shows what might happen if the effects of assembly code are
ignored.

procedure test is
begin

a:= 1;
b:= 0;
-- copy "b" to "a":
-- b:= a
pragma asm ("move: a,b")
b:= 1 /a;

end;

Due to the reliance on the software’s default stub, the assembly code is
ignored and the division " /"is green. The red division "/" could only be
achieved with a manual stub.

Summary
Stub manually: to gain precision by restricting return values generated by
automatic stubs; to deal with a function which writes to global variables.

Stub automatically in the knowledge that no runtime error will be ever
introduced by automatic stubbing; to minimize preparation time.

Automatic Stubbing

Problem
What is the default behavior for missing functions?

Explanation
Some functions may not be included in the set of Ada source files because:

• they are external,

• they are written in C, or any other language than Ada,

• they are part of the system libraries.

5-5

5 Preparing Source Code for Verification

PolySpace relies on and trusts their specifications when stubbing them.

Solution
Add the -automatic-stubbing option to your launching script and PolySpace
will stub missing code as follows:

• for an in parameter, nothing happens;

• for an out (or in out) parameter, the variable will be given the full range of
its type;

• for a return parameter, it will be the full range of its type.

A procedure with this specification:

procedure a_missing_function (a: in out type_1, b: in integer);

will be stubbed like so:

a_missing_function (var_1, var_2)

That is - the "var_1" variable will be overwritten with the full range of type_1.

5-6

Preparing Code for Variables

Preparing Code for Variables

In this section...

“Float Rounding” on page 5-7
“Expansion of Sizes” on page 5-8
“Volatile Variables” on page 5-8
“Shared Variables” on page 5-10

Float Rounding
PolySpace handles float rounding by following the ANSI/IEEE 754-1985
standard. Using the -ignore-float-rounding option, PolySpace computes exact
values of floats. Some paths will be reachable or not for PolySpace while they
are not (or are) depending of the compiler and target. So it can potentially
give approximate results: green should be unproven. Using the option allows
to first have a look on remaining unproven check OVFL.

The Following example shows the board effect of such option:

package float_rounding is
procedure main;

end float_rounding;
package body float_rounding is
procedure main is
x : float := float'last;
random : boolean;
pragma import(C,random);

begin
if random then
x := x + 5.0 - float'last;
-- with -ignore-float-rounding : overflow red on + 5.0
-- without -ignore-float-rounding : overflow orange and x is

very close to zero
else
x := x - 5.0 - float'last;
-- with -ignore-float-rounding : x is now equal to 5.0
-- without -ignore-float-rounding : x is very close to zero

end if;

5-7

5 Preparing Source Code for Verification

end;
end float_rounding;

Expansion of Sizes
The -array-expansion-size option forces PolySpace to verify each cell of
global variable arrays having length less or equal to number as a separate
variable.

Example

Package body Test is
Glob_Array_3 : array(1..3) of Integer := (1,2,3);
Glob_Array_8 : array(1..8) of Integer := (1,2,3,4,5,6,7,8);
procedure Main is
begin
pragma Assert (Glob_Array_3(3) = 3);
pragma Assert (Glob_Array_8(3) = 3);

end Main;
end Test;

The -variable-to-expand option is used to specify aggregate variables
(record, etc.) that will be split into independent variables for the purpose of
verification. This option has an impact on the Global Data Dictionary results:

• Each variable specified in this option will have its fields verified separately;

• The data dictionary will distinguish fields accessed by different tasks.

The depth of the variable to expand is controlled by the -variable-to-expand.

Note Expansion options have an impact on the duration of a verification.

Volatile Variables

Problem
A volatile variable can be defined as a variable which does not respect the
"RAM axiom".

5-8

Preparing Code for Variables

This axiom is:

"If I write a value V in the variable X and if I read X’s value before any other
writing to X occurs, I will get V."

Explanation
As the value of a volatile variable is "unknown", it can take any value (that
can be) represented by the type of the variable and can change even between
2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because
the value can change within its whole range between one read access and
the next.

Note Even if the volatile characteristic of a variable is also commonly used
by programmers to avoid compiler optimization, it has no consequence for
PolySpace.

function test return integer is
random: Integer;
pragma volatile (random);
y: Integer; -- random ~ [-2^31, 2^31-1] ,

-- although random is not initialized
begin

y:= 1 /random; -- division and init orange
-- because random

~ [-2^31, 2^31-1]
random:= 100;
y:= 1 /random; -- division and init orange

-- because random~ [-2^31,2^31-1]
return random; -- random ~ [-2^31, 2^31-1]

end;

5-9

5 Preparing Source Code for Verification

Shared Variables

Abstract
All of my shared variables appear in orange in the variable dictionary.

Explanation
When you launch PolySpace Server without any option all tasks are examined
at the same level, making no assumptions about priorities, sequence order,
or timing. In this context, shared variables will always be considered as
unprotected.

Solution
You can use the following mechanisms to protect your variables.

• Critical section and mutual exclusion (explicit protection mechanisms);

• Access pattern (implicit protection);

• Rendezvous.

Critical Sections
These are the most common protection mechanism in applications and they
are simple to use in PolySpace Server:

• if one task makes a call to a particular critical section, all other tasks will
be blocked on the "critical-section-begin" function call until the originating
task calls the "critical-section-end" function;

• this doesn’t mean the code between two critical sections is atomic;

• It is a binary semaphore: you only have one token per label (in the
example below CS1). Unlike many implementations of semaphores, it is
not a decrementing counter that can keep track of a number of attempted
accesses.

Also refer to “Atomicity” on page 5-26

5-10

Preparing Code for Variables

package my_tasking.

procedure proc1;
procedure proc2;
procedure my_main;
X: INTEGER;
Y: INTEGER;

end my_tasking;

package body my_tasking.

with pkutil; use pkutil;
package body my_tasking is
procedure proc1 is
begin
begin_cs;
X = 12; -- X is protected
Y = 100;

end_cs;
end;
procedure proc2 is
begin
begin_cs;
X = 11; -- X is protected

end_cs;
Y = 101; -- Y is not protected

end;
procedure my_main is
begin
X := 0;
Y := 0;

end
end my_tasking;

package pkutil.

procedure begin_cs;
procedure end_cs;

end pkutil;

5-11

5 Preparing Source Code for Verification

package body pkutil.

procedure Begin_CS is
begin
null;

end Begin_CS;
procedure End_CS is
begin
null;

end end_cs;
end pkutil;

Launching command.

polyspace-ada \
-automatic-stubbing \
-main my_tasking.my_main \

-entry-points my_tasking.proc1,my_tasking.proc2 \
-critical-section-begin "pkutil.begin_cs:CS1" \
-critical-section-end "pkutil.end_cs:CS1"

Mutual Exclusion
Mutual exclusion between tasks or interrupts can be implemented while
preparing PolySpace Server for launch setting.

Suppose there are entry-points which never overlap each other, and that
variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time, you
may want PolySpace Server to take this into account. Consider the following
example.

These entry-points cannot overlap:

• t1 and t3

• t2, t3 and t4

These entry-points can overlap:

5-12

Preparing Code for Variables

• t1 and t2

• t1 and t4

Before launching Server, the names of mutually exclusive entry-points are
placed on a single line

polyspace-ada -temporal-exclusion-file myExclusions.txt
-entry-points t1,t2,t3,t4

The myExclusions.txt is also required in the current directory. This will
contain:

t1 t3

t2 t3 t4

Rendezvous
All Ada rendezvous are taken into account without any input from the user.
This is the only way to synchronize tasks. PolySpace Server does not handle
atomicity, so other task synchronization mechanisms (including the use of
critical sections) are not recognized by PolySpace Server.

package_first_task other tasks

package first_task is
task task_1 is
entry INIT;
entry ORDER (X: out Integer);

end task_1;
end first_task;
package body first_task is
task body task_1 is
begin
accept INIT;
-- do things
accept ORDER (X: out Integer)
do
-- do things

with first_task; use first_task;
package other_tasks is
task task_2 is
end task_2;
procedure main;

end other_tasks;
package body other_tasks is
task body task_2 is
X: INTEGER;

begin
task_1.init;
task_1.Order(X);

end task_2;
procedure main is

5-13

5 Preparing Source Code for Verification

package_first_task other tasks

-- call functions
X:= 12;

end; -- end accept
-- return to main execution

end task_1;
end first_task;

begin;
null;

end;
end other_tasks;

The use of explicit tasks makes it unnecessary to use the entry-points
option in your launching script.

polyspace-ada -main other_task.main

Semaphores
Although it is possible to implement in ada, it is not possible to take into
account a semaphore system call in PolySpace Server. Nevertheless, Critical
sections may be used to model the behavior.

5-14

Preparing Multitasking Code

Preparing Multitasking Code

In this section...

“PolySpace Software Assumptions” on page 5-15
“Scheduling Model” on page 5-16
“Modelling Synchronous Tasks” on page 5-17
“Interruptions and Asynchronous Events/Tasks” on page 5-19
“Are Interruptions Maskable or Preemptive by Default?” on page 5-21
“Mailboxes” on page 5-22
“Atomicity” on page 5-26
“Priorities” on page 5-27

PolySpace Software Assumptions
These are the rules followed by PolySpace. It is strongly recommended that
the preceding sections should be read and understood before applying the
rules described below. Some rules are mandatory; others facilitate improved
selectivity.

The following describes the default behavior of PolySpace. If the code to be
verified does not conform to these assumptions, then some minor modifications
to the code or to the PolySpace runtime parameters will be required.

• The main procedure must terminate in order for entry-points (or tasks)
to start.

• All tasks or entry-points start after the execution of the main has
completed. They all start simultaneously, without any predefined
assumptions regarding the sequence, priority and preemption.

If an entry-point is seen as dead code, it can be assumed that the main
contains (a) red error(s) and therefore does not terminate. PolySpace assumes:

• no atomicity,

• no timing constraints.

5-15

5 Preparing Source Code for Verification

Scheduling Model
A problem can occur when some code is verified and the results suggest that
all background tasks are dead code. In the same way, the problem could
the same (gray code) if several tasks (infinite loops) are defined and run
concurrently in an RTOS.

In the PolySpace model, the main procedure is executed first before any other
task is started. After it has finished, all task entry points are assumed to start
concurrently, meaning they can interrupt each other at any time. This is an
accurate upper approximation model for most concurrent RTOS.

Tasks and main loops need to simply declare as entry points. It only concerns
task not defined using keyword of the Ada language.

Example

procedure body back_ground_task is
begin
loop -- infinite loop

-- background task body
-- operations
-- function call
my_original_package.my_procedure;
end loop

end back_ground_task

Launching Command
polyspace-ada -entry-points
package.other_task,package.back_ground_task

If the tasks are already infinite loops, simply declare them as mentioned
above.

Limitation
• A main procedure is always needed using -main option.

• The tasks declared in -entry-points may not take parameters and
may not have return values: procedure MyTask is end MyTask;

5-16

Preparing Multitasking Code

If it is not the case, it is mandatory to encapsulate with a new procedure.
In this case, the real task will be called inside.

• The main procedure cannot be called in a defined or declared task.

Modelling Synchronous Tasks

Problem
My application has the following behavior:

• Once every 10 ms: void tsk_10ms(void);

• Once every 30 ms: ...

• Once every 50 ms

My tasks never interrupt each other. My tasks are not infinite loops - they
always return control to the calling context.

procedure tsk_10ms;
begin do_things_and_exit();
-- it's important it returns control

end;

Explanation
If each task was declared to PolySpace by using the option

polyspace-ada -entry-points pack_name.tsk_10ms,
pack_name.tsk_30ms, pack_name.tsk_50ms

then the results would be valid - but there may be more warnings than
necessary (that is, the results are less precise) because more scenarios than
could actually happen at execution time are modelled.

In order to address this, PolySpace Server needs to be informed that the
tasks are purely sequential - that is, that they are functions to be called in a
deterministic order. This can be achieved by writing a function to call each

5-17

5 Preparing Source Code for Verification

of the tasks in the correct sequence, and then declaring this new function
as a single task entry point.

Solution 1
Write a function that calls the cyclic tasks in the right order: this is an exact
sequencer. This sequencer is then identified to the software as a single task.

This sequencer will be a single PolySpace task entry point. This solution:

• is more precise,

• but you need to know the exact sequence of events.

procedure body one_sequential_Ada_function is
begin
loop
tsk_10ms;
tsk_10ms;
tsk_10ms;
tsk_30ms;
tsk_10ms;
tsk_10ms;
tsk_50ms;

end_loop
end one_sequential_Ada_function;

polyspace-ada -entry-points pack_name.one_sequential_Ada_function

Solution 2
Make an upper approximation sequencer, which takes into account every
possible scheduling. This solution:

• is less precise,

• but is quick to code, especially for complicated scheduling.

procedure body upper_approx_Ada_function is
random : integer;
pragma volatile (random);

5-18

Preparing Multitasking Code

begin
loop
if (random = 1) than tsk_10ms; end if;
if (random = 1) than tsk_30ms; end if;
if (random = 1) than tsk_50ms; end if;

end_loop
end upper_approx_Ada_function;

polyspace-ada -entry-points pack_name.upper_approx_Ada_function

Note If this is the only task, then it can be added at the end of the main.

Interruptions and Asynchronous Events/Tasks

Problem
I have interrupt service routines which appear in gray (dead code) in the
Viewer.

Explanation
The gray code indicates that this code is not executed and is not taken into
account, so all interruptions and tasks are ignored by PolySpace Server.

The execution model is such that the main is executed initially. Only if the
main terminates and returns control (i.e. if it is not an infinite loop) will
the task entry points be started, with all potential starting sequences being
modeled.

My interrupts it1 and it2 cannot preempt each other
If these 3 following conditions are fulfilled:

• the it1 and it2 functions can never interrupt each other;

• each interrupt can be raised several times, at any time;

• they are returning functions, and not infinite loops.

5-19

5 Preparing Source Code for Verification

Then you can group non preemptive interruptions in a single function and
declare that function as a task entry point.

procedure it_1;
procedure it_2;

task body all_interruptions_and_events is
random: boolean;
pragma volatile (random);
begin
loop
if (random) then it_1; end if;
if (random) then it_2; end if;

end_loop
end all_interruptions_and_events;

polyspace-ada -entry-points package.all_interruptions_and_events

My interruptions can preempt each other
If two interruption can be interrupted, then:

• encapsulate each of them in a loop;

• declare each loop as a task entry point.

package body original_file is
procedure it_1 is begin ... end;
procedure it_2 is begin ... end;
procedure one_task is begin ... end;

end;

package body new_poly is
procedure polys_it_1 is begin loop it_1; end loop; end;
procedure polys_it_2 is begin loop it_2; end loop; end;
procedure polys_one_task is begin loop one_task; end loop; end;

polyspace-ada -entry-points new_poly. polys_it_1,new_poly. polys_it_2,
new_poly.polys_one_task

5-20

Preparing Multitasking Code

Are Interruptions Maskable or Preemptive by
Default?

Problem
In my main task I use a critical section but I still have unprotected shared
data. My application contains interrupts. Why is my variable verified as
unprotected?

Explanation
PolySpace Server does not distinguish between interrupt service routines
and tasks. If you specify an interrupt to be an -entry-point, it will have the
same priority level as any other procedures that are also declared as tasks
via the -entry-point option. Therefore, as PolySpace Server makes an upper
approximation of all scheduling and all interleaving, it includes the
possibility that the ISR might be interrupted by any other task. There
are more paths modelled than can happen during execution, but this has no
adverse effect on the results obtained;

Solution
Embed your interrupt in a specific procedure that uses the same critical
section as the one you use in your main task. Then, each time this function
is called, the task will enter a critical section which will be equivalent to a
nonmaskable interruption.

Original Packages

package my_real_package is
procedure my_main_task;
procedure my_real_it;
shared_X: INTEGER:= 0;

end my_real_package;

package body my_real_package is
procedure my_main_task is
begin
mask_it;
shared_x:= 12;

5-21

5 Preparing Source Code for Verification

unmask_it;
end my_main_task;

procedure my_real_it is
begin
shared_x:= 100;

end my_real_it;
end my_real_package;

Extra Packages
An extra package necessary to embed the task with body my_real_package;

package extra_additional_pack is
procedure polyspace_real_it;

end extra_additional_package;

package body extra_additional_pack is
procedure polyspace_real_it is
begin
mask_it;
my_real_package.my_real_it;
unmask_it;

end;
end extra_additional_package;

Command Line to Launch PolySpace Viewer

polyspace-ada \
-entry-point my_real_package.my_main_task,extra_additional_pack\
polyspace_real_it
\
-main your_package.your_main

Mailboxes

Problem
My application has several tasks:

5-22

Preparing Multitasking Code

• some that post messages in a mailbox;

• others that read these messages asynchronously.

This communication mechanism is possible because the OS libraries provide
send and receive procedures. I do not have the source files because these
procedures are part of the OS libraries.

Explanation
By default, PolySpace Server will automatically stub these send/receive
procedures. Such a stub will exhibit the following behavior:

• for send(char *buffer, int length): the content of the buffer will only be
written when the procedure is called;

• for receive(char *buffer, int *length): each element of the buffer will contain
the full range of values appropriate to that data type.

Solution
You can provide similar mechanisms with different levels of precision.

Mechanism Description

Let PolySpace Server stub
automatically

• Quick and easy to code

• Imprecise because there is no direct
connection between a mailbox sender
and receiver. It means that even if the
sender is only submitting data within
a small range, the full data range
appropriate for the type(s) will be for
the receiver data.

5-23

5 Preparing Source Code for Verification

Mechanism Description

Provide a real mailbox
mechanism

• Can be very costly (time consuming)
to implement

• Can introduce errors in the stubs

• Is too much effort compared with the
solution below

• Precise, but does not provide a much
better precision than the upper
approximation

Provide an upper
approximation of the
mailbox

in which each new read to the mailbox
reads one of the recently posted
messages, but not necessarily the last
one.

• Quick and easy to code

• Gives precise results

• See detailed implementation below

package mailboxes

type BIG_ARRAY is
array (1..100)of INTEGER;

type MESSAGE is
record
length: INTEGER;
content: BIG_ARRAY;

end MESSAGE;
MAILBOX : MESSAGE;
procedure send
(X: in MAILBOX);

procedure receive
(X: out MAILBOX);

end mailboxes;

5-24

Preparing Multitasking Code

package body mailboxes

procedure send (X: in MESSAGE) is
random : boolean;
pragma Volatile_(random);

begin
if (random) then
MAILBOX:= X;

end if;
-- a potential write
-- to the mailbox

end;

procedure receive

(X: out MESSAGE) is
begin
X:= MAILBOX;

end;

task body task_1

msg : MESSAGE;
begin
for i in 1 .. 100 loop
msg.content(i):= i;

end loop;
msg.length : = 100;
send(msg);

end task_1;
task body task_2 is
msg : MESSAGE;

begin
receive(msg);
if (msg.length = 100) ...

end;

Provided that each of these tasks is included in a package.

polyspace-ada -main a_package.a_procedure

5-25

5 Preparing Source Code for Verification

Atomicity

Definitions

• Atomic— In computer programming, atomic describes a unitary action or
object that is essentially indivisible, unchangeable, whole, and irreducible

• Atomicity — In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or none are.

Instructional Decomposition
In general terms, PolySpace Server does not take into account either CPU
instruction decomposition or timing considerations.

It is assumed by PolySpace that instructions are never atomic except in the
case of read and write instructions. PolySpace Server makes an upper
approximation of all scheduling and all interleaving. There are more
paths modelled than could happen during execution, but given that all
possible paths are always verified, this has no adverse effect on the
results obtained.

Consider a 16 bit target that can manipulate a 32 bit type (an int, for example).
In this case, the CPU needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value
of 0x0000. Now suppose 0xFF55 is written it. If the operation was not
atomic it could be interrupted by another instruction in the middle of the
write operation.

• Task 1: Writes 0xFF55 to x.

• Task 2: Interrupts task 1. Depending on the timing, the value of x could be
any of 0xFF00, 0x0055 or 0xFF55.

PolySpace Server considers write/read instructions atomic, so task 2 can
only read 0xFF55, even if X is not protected (refer to “Shared Variables”
on page 5-10).

5-26

Preparing Multitasking Code

Critical Sections
In terms of critical sections, PolySpace Server does not model the concept of
atomicity. A critical section only guarantees that once the function associated
with -critical-section-begin has been called, any other function making use of
the same label will be blocked. All other functions can still continue to run,
even if somewhere else in another task a critical section has been started.

PolySpace Server’s verification of Runtime Errors (RTEs) supposes that there
was no conflict when writing the shared variables. Hence even if a shared
variable is not protected, the RTE verification is complete and correct.

More information is available in “Critical Sections” on page 5-10.

Priorities
Priorities are not taken into account by PolySpace as such. However, the
timing implications of software execution are not relevant to the verification
performed by PolySpace Server, which is usually the primary reason for
implementing software task prioritization. In addition, priority inversion
issues can mean that it would be dangerous to assume that priorities
can protect shared variables. For that reason, PolySpace makes no such
assumption.

In practice, while there is no facility to specify differing task priorities, all
priorities are taken into account because of the default behavior of PolySpace
Server assumes that:

• all task entry points (as defined with the option -entry-points) start
potentially at the same time;

• they can interrupt each other in any order, no matter the sequence of
instructions - and so all possible interruptions will be accounted for, in
addition to some which can never occur in practice.

If you have two tasks t1 and t2 in which t1 has higher priority than t2, simply
use polyspace-ada -entry-points t1,t2 in the usual way.

• t1 will be able to interrupt t2 at any stage of t2, which models the behavior
at execution time;

5-27

5 Preparing Source Code for Verification

• t2 will be able to interrupt t1 at any stage of t1, which models a behavior
which (ignoring priority inversion) would never take place during execution.
PolySpace Server has made an upper approximation of all scheduling
and all interleaving. There are more paths modelled than could happen
during execution, but this has no adverse effect on the results obtained.

5-28

6

Running a Verification

• “Types of Verification” on page 6-2

• “Running Verifications on PolySpace Server” on page 6-3

• “Running Verifications on PolySpace Client” on page 6-19

• “Running Verifications from Command Line” on page 6-24

6 Running a Verification

Types of Verification
You can run a verification on a server or a client.

Use... For...

Server • Best performance

• Large files (more than 800 lines of code including comments)

• Multitasking
Client • An alternative to the server when the server is busy

• Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

6-2

Running Verifications on PolySpace® Server

Running Verifications on PolySpace Server

In this section...

“Starting Server Verification” on page 6-3
“What Happens When You Run Verification” on page 6-4
“Managing Verification Jobs Using the PolySpace Queue Manager” on
page 6-5
“Monitoring Progress of Server Verification” on page 6-6
“Viewing Verification Log File on Server” on page 6-9
“Stopping Server Verification Before It Completes” on page 6-11
“Removing Verification Jobs from Server Before They Run” on page 6-12
“Changing Order of Verification Jobs in Server Queue” on page 6-13
“Purging Server Queue” on page 6-13
“Changing Queue Manager Password” on page 6-15
“Sharing Server Verifications Between Users” on page 6-15

Starting Server Verification
Most verification jobs run on the PolySpace server. Running verifications on a
server provides optimal performance.

To start a verification that runs on a server:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Select the Send to PolySpace Server check box next to the Execute
button in the middle of the Launcher window.

6-3

6 Running a Verification

Note If you select Set this option to use the server mode by default
in every new project in the Remote Launcher pane of the preferences,
the Send to PolySpace Server check box is selected by default when you
create a new project.

4 Click Execute.

The verification starts. For information on the verification process, see
“What Happens When You Run Verification” on page 6-4.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

5 When you see the message Verification process completed, click OK
to close the message dialog box.

6 For information on downloading and viewing your results, see “Opening
Verification Results” on page 8-8.

What Happens When You Run Verification
The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular Ada compiler, it ensures that
your code is portable, maintainable, and complies with ANSI® standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see
the section “-main-generator” in the “Options Description” chapter of the
PolySpace Client/Server for Ada User’s Guide.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase completes:

6-4

Running Verifications on PolySpace® Server

• A message dialog box tells you that the verification completed. This
message means that the part of the verification that takes place on the
client is complete. The rest of the verification runs on the server.

• A message in the log area tells you that the verification was transferred
to the server and gives you the identification number (Analysis ID) for the
verification. For the following verification, the identification number is 1.

Managing Verification Jobs Using the PolySpace
Queue Manager
You manage all server verifications using the PolySpace Queue Manager (also
called the PolySpace Spooler). The PolySpace Queue Manager allows you to
move jobs within the queue, remove jobs, monitor the progress of individual
verifications, and download results.

To manage verification jobs on the PolySpace Server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6-5

6 Running a Verification

2 Right-click any job in the queue to open the context menu for that
verification.

3 Select the appropriate option from the context menu.

Tip You can also open the Polyspace Queue Manager Interface by clicking
the PolySpace Queue Manager icon in the PolySpace Launcher toolbar.

Monitoring Progress of Server Verification
You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

6-6

Running Verifications on PolySpace® Server

The PolySpace Queue Manager Interface opens.

2 Right-click the job you want to monitor, and select Follow Progress from
the context menu.

A Launcher window labeled PolySpace follow remote analysis
progress for C appears.

6-7

6 Running a Verification

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The word
processing appears under the current phase. The progress bar highlights
each completed phase and displays the amount of time for that phase.

The logs report additional information about the progress of the verification.
The information appears in the log display area at the bottom of the
window. The full log displays by default. It display messages, errors, and
statistics for all phases of the verification. You can search the full log by
entering a search term in the Search in the log box and clicking the left
arrows to search backward or the right arrows to search forward.

3 Click the Compile Log button to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward. Click on any message in the log to get details
about the message.

6-8

Running Verifications on PolySpace® Server

4 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

5 Click the refresh button to update the stats log display as the
verification progresses.

6 Select File > Quit to close the progress window.

When the verification completes, the status in the PolySpace Queue
Manager Interface changes from running to completed.

Viewing Verification Log File on Server
You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6-9

6 Running a Verification

2 Right-click the job you want to monitor, and select View log file.

A window opens displaying the last one-hundred lines of the verification.

3 Press Enter to close the window.

6-10

Running Verifications on PolySpace® Server

Stopping Server Verification Before It Completes
You can stop a verification running on the server before it completes using
the PolySpace Queue Manager. If you stop the verification, results will be
incomplete, and if you start another verification, the verification starts over
from the beginning.

To stop a server verification:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

2 Right-click the job you want to monitor, and select one of the following
options:

• Kill and download results — Stops the verification immediately
and downloads any preliminary results. The status of the verification
changes from “running” to “aborted”. The verification remains in the
queue.

• Kill and remove from queue — Stops the verification immediately
and removes it from the queue.

6-11

6 Running a Verification

Removing Verification Jobs from Server Before They
Run
If your job is in the server queue, but has not yet started running, you can
remove it from the queue using the PolySpace Queue Manager.

Note If the job has started running, you must stop the verification before you
can remove the job (see “Stopping Server Verification Before It Completes”
on page 6-11). Once you have aborted a verification, you can remove it from
the queue.

To remove a job from the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

2 Right-click the job you want to remove, and select Remove from queue.

The job is removed from the queue.

6-12

Running Verifications on PolySpace® Server

Changing Order of Verification Jobs in Server Queue
You can change the priority of verification jobs in the server queue to
determine the order in which the jobs run.

To move a job within the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

2 Right-click the job you want to remove, and selectMove down in queue.

The job is moved down in the queue.

3 Repeat this process to reorder the jobs as necessary.

Purging Server Queue
You can purge the server queue of all jobs, or completed and aborted jobs
using the using the PolySpace Queue Manager.

Note You must have the queue manager password to purge the server queue.

6-13

6 Running a Verification

To purge the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

2 Select Operations > Purge queue. The Purge queue dialog box opens.

3 Select one of the following options:

• Purge completed and aborted analysis — Removes all completed
and aborted jobs from the server queue.

• Purge the entire queue— Removes all jobs from the server queue.

6-14

Running Verifications on PolySpace® Server

4 Enter the Queue Manager Password.

5 Click OK.

The server queue is purged.

Changing Queue Manager Password
The Queue Manager has an administrator password to control access to
advanced operations such as purging the server queue. You can set this
password through the Queue Manager.

Note The default password is administrator.

To set the Queue Manager password:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

2 Select Operations > Change Administrator Password.

The Change Administrator Password dialog box opens.

3 Enter your old and new passwords, then click OK.

The password is changed.

Sharing Server Verifications Between Users

Security of Jobs in Server Queue
For security reasons, all verification jobs in the server queue are owned by the
user who sent the verification from a specific account. Each verification has a
unique encryption key, that is stored in a text file on the client system.

When you manage jobs in the server queue (download, kill, remove, etc.), the
Queue Manager checks the public keys stored in this file to authenticate
that the job belongs to you.

6-15

6 Running a Verification

If the key does not exist, an error message appears: “key for verification
<ID> not found”.

analysis-keys.txt File
The public part of the security key is stored in a file named analysis-keys.txt
associated to a user account. This file is located in:

• UNIX® — /home/<username>/.PolySpace

• Windows®— C:\Documents and Settings\<username>\Application
Data\PolySpace

The format of this ASCII file is as follows (tab-separated):

<id of launching> <server name of IP address> <public key>

where <public key> is a value in the range [0..F]

The fields in the file are tab-separated.

The file cannot contain blank lines.

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCE576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

Sharing Verifications Between Accounts
To share a server verification with another user, you must provide the public
key.

To share a verification with another user:

1 Find the line in your analysis-keys.txt file containing the <ID> for the
job you want to share.

2 Add this line to the analysis-keys.txt file of the person who wants to
share the file.

6-16

Running Verifications on PolySpace® Server

The second user can then download or manage the verification.

Magic Key to Share Verifications
A magic key allows you to share verifications without copying individual
keys. This allows you to use the same key for all verifications launched from
a single user account.

The format for a magic key is as follows:

0 <Server id> <your hexadecimal value>

When you add this key to your verification-key.txt file, all verification
jobs you submit to the server queue use this key instead of a random one.
All users who have this key in their verification-key.txt file can then
download or manage your verification jobs.

Note This only works for verification jobs launched after you place the magic
key in the file. If the verification was launched before the key was added, the
normal key associated to the ID is used.

If analysis-keys.txt File is Lost or Corrupted
If your analysis-keys.txt file is corrupted or lost (removed by mistake) you
cannot download your verification results. To access your verification results
you must use administrator mode.

Note You must have the queue manager password to use Administrator
Mode.

To use administrator mode:

1 Double-click the PolySpace Spooler icon:

6-17

6 Running a Verification

The PolySpace Queue Manager Interface opens.

2 Select Operations > Enter Administrator Mode.

3 Enter the Queue Manager Password.

4 Click OK.

You can now manage all verification jobs in the server queue, including
downloading results.

6-18

Running Verifications on PolySpace® Client

Running Verifications on PolySpace Client

In this section...

“Starting Verification on Client” on page 6-19
“What Happens When You Run Verification” on page 6-20
“Monitoring the Progress of the Verification” on page 6-21
“Stopping Client Verification Before It Completes” on page 6-22

Starting Verification on Client
For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

If you launch a verification on Ada code containing more than 2,000
assignments and calls, the verification will stop and you will receive an error
message.

To start a verification that runs on a client:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Ensure that the Send to PolySpace Server check box is not selected.

4 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning only appears when you clear the Send to PolySpace
Server check box.

5 Click the Execute button.

6-19

6 Running a Verification

6 If you see a caution that PolySpace software will remove existing results
from the results directory, click Yes to continue and close the message
dialog box.

The progress bar and logs area of the Launcher window become active.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

7 When the verification completes, a message dialog box appears telling you
that the verification is complete and asking if you want to open the Viewer.

8 Click OK to open your results in the Viewer.

For information on viewing your results, see “Opening Verification Results”
on page 8-8.

What Happens When You Run Verification
The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular Ada compiler, it ensures that
your code is portable, maintainable, and complies with ANSI standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see

6-20

Running Verifications on PolySpace® Client

the section “-main-generator” in the “Options Description” chapter of the
PolySpace Client/Server for Ada User’s Guide.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

Monitoring the Progress of the Verification
You can monitor the progress of the verification by watching the progress bar
and viewing the logs at the bottom of the Launcher window.

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the log
display area at the bottom of the Launcher window.

To view the logs:

1 The compile log is displayed by default.

This log displays compile phase messages and errors. You can search the
log by entering search terms in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward. Click
on any message in the log to get details about the message.

6-21

6 Running a Verification

2 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

3 Click the refresh button to update the stats log display as the
verification progresses.

4 Click the Full Log button to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

Stopping Client Verification Before It Completes
You can stop the verification before it completes. If you stop the verification,
results will be incomplete, and if you start another verification, the verification
starts over from the beginning.

To stop a verification:

1 Click the Stop Execution button.

A warning dialog box appears.

2 Click Yes.

The verification stops and the message Verification process stopped
appears.

6-22

Running Verifications on PolySpace® Client

3 Click OK to close the Message dialog box.

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

6-23

6 Running a Verification

Running Verifications from Command Line

In this section...

“Launching Verifications in Batch” on page 6-24
“Managing Verifications in Batch” on page 6-24

Launching Verifications in Batch
A set of commands allow you to launch a verification in batch.

All these commands begin with the following prefixes:

• Server verification —
<PolySpaceInstallDir>/Verifier/bin/polyspace-remote-ada95

• Client verification —polyspace-remote-desktop-ada95

These commands are equivalent to commands with a prefix
<PolySpaceInstallDir>/bin/polyspace-.

For example, polyspace-remote-desktop-ada95 -server
[<hostname>:[<port>] | auto] allows you to send a Ada desktop
verification remotely.

Note If your PolySpace server is running on Windows, the batch
commands are located in the /wbin/ directory. For example,
<PolySpaceInstallDir>/Verifier/wbin/polyspace-remote-ada95.exe

Managing Verifications in Batch
In batch, a set of commands allow you to manage verification jobs in the
server queue.

On UNIX platforms, all these command begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-.

6-24

Running Verifications from Command Line

On Windows platforms, these commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/wbin/psqueue-:

• psqueue-download <id> <results dir> — download an identified
verification into a results directory.

- [-f] force download (without interactivity)

- -admin -p <password> allows administrator to download results.

- [-server <name>[:port]] selects a specific Queue Manager.

- [-v|version] gives release number.

• psqueue-kill <id>— kill an identified verification.

• psqueue-purge all|ended — remove all completed verifications from
the queue.

• psqueue-dump— gives the list of all verifications in the queue associated
with the default Queue Manager.

• psqueue-move-down <id> — move down an identified verification in the
Queue.

• psqueue-remove <id>— remove an identified verification in the queue.

• psqueue-get-qm-server— give the name of the default Queue Manager.

• psqueue-progress <id>: give progression of the currently identified and
running verification.

- [-open-launcher] display the log in the graphical user interface of
launcher.

- [-full] give full log file.

- psqueue-set-password <password> <new password> — change
administrator password.

• psqueue-check-config— check the configuration of Queue Manager.

- [-check-licenses] check for licenses only.

• psqueue-upgrade — Allow to upgrade a client side (see the PolySpace
Installation Guide in the <PolySpace Common Dir>/Docs directory).

- [-list-versions] give the list of available release to upgrade.

6-25

6 Running a Verification

- [-install-version <version number> [-install-dir
<directory>]] [-silent] allow to install an upgrade in a given
directory and in silent.

Note <PolySpaceCommonDir>/bin/psqueue-<command> -h gives
information about all available options for each command.

6-26

7

Troubleshooting
Verification Problems

• “Verification Process Failed Errors” on page 7-2

• “Compile Errors” on page 7-6

• “Reducing Verification Time” on page 7-9

7 Troubleshooting Verification Problems

Verification Process Failed Errors

In this section...

“Overview” on page 7-2
“Hardware Does Not Meet Requirements” on page 7-2
“You Did Not Specify the Location of Included Files” on page 7-2
“PolySpace Software Cannot Find the Server” on page 7-3
“Limit on Assignments and Function Calls” on page 7-4

Overview
If you see a message that saying Verification process failed, it indicates
that PolySpace software could not perform the verification. The following
sections present some possible reasons for a failed verification.

Hardware Does Not Meet Requirements
The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientada/requirements.html.

To determine if this is the cause of the failed verification, search the log for
the message:

Errors found when verifying host configuration.

You can:

• Upgrade your computer to meet the minimal requirements.

• Select the Continue with current configuration option in the General
section of the Analysis options and run the verification again.

You Did Not Specify the Location of Included Files
If you see a message in the log, such as the following, either the files are
missing or you did not specify the location of included files.

7-2

http://www.mathworks.com/products/polyspaceclientc/requirements.html

Verification Process Failed Errors

Verifier found an error in example.adb:23:14: "runtime_error
(spec)" depends on "types (spec)"

For information on how to specify the location of include files, see “Creating
New Projects” on page 3-8.

PolySpace Software Cannot Find the Server
If you see the following message in the log, PolySpace software cannot find
the server.

Error: Unknown host :

PolySpace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Edit > Preferences.

2 Select the Remote Launcher tab.

7-3

7 Troubleshooting Verification Problems

By default, PolySpace software automatically finds the server. You can
specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the PolySpace Installation Guide.

Limit on Assignments and Function Calls
If you launch a client verification on a large file, the verification may stop and
you may receive an error message saying the number of assignments and
function calls is too big. For example:

Beginning C to intermediate language translation
**
C to intermediate language translation 1 (P_SP)
...

7-4

Verification Process Failed Errors

*** License error: number of assignments and function calls is too
big for -unit mode (5534 v.s 2000).
*** Aborting.

PolySpace Client for Ada software can only verify Ada code with up to 2,000
assignments and calls.

To verify code containing more than 2,000 assignments and calls, launch your
verification on the PolySpace Server for Ada.

7-5

7 Troubleshooting Verification Problems

Compile Errors

In this section...

“Overview” on page 7-6
“Examining the Compile Log” on page 7-6
“Unit Verification” on page 7-8

Overview
PolySpace software may be used instead of your chosen compiler to make
syntactical, semantic and other static checks. These errors will be detected
during the standard compliance checking stage, which takes about the same
amount of time to run as a compiler. The use of PolySpace software this early
in development yields a number of benefits:

• detection of link errors, plus errors which are only apparent with reference
to two or more files;

• objective, automatic and early control of development work (perhaps to
avoid errors prior to checking code into a configuration management
system).

Examining the Compile Log
The compile log displays compile phase messages and errors. You can search
the log by entering search terms in the Search in the log box and clicking
the left arrows to search backward or the right arrows to search forward.

To examine errors in the Compile log:

1 Click the Compile button in the log area of the Launcher window.

A list of compile phase messages appear in the log part of the window.

7-6

Compile Errors

2 Click on any of the messages to see message details, as well as the full
path of the file containing the error.

3 To open the source file referenced by any message, right click the row for
the message, then select Open Source File.

The file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 3-16.

4 Correct the error and run the verification again.

7-7

7 Troubleshooting Verification Problems

Unit Verification
PolySpace requires the complete specifications associated with a package body
verification. Sometimes you might face this kind of obvious error message:

Verifying _pst_main

Verifying my_package

-> Verifier found an error
in ./My_Package.adb:2:14:
Missing specification for unit "My_Package"

PolySpace reports this kind of error when a package body is supplied as the
source and the specification is supplied as one of the specifications in one of
the -ada-include-dir directories.

Specifications of the package body needs to be included in the list of supplied
sources.

7-8

Reducing Verification Time

Reducing Verification Time

In this section...

“PolySpace Verification Duration” on page 7-9
“An Ideal Application Size” on page 7-9
“Why Should there be an Optimum Size?” on page 7-10
“Selecting a Subset of Code” on page 7-11
“What are the Benefits of these Methods?” on page 7-17

PolySpace Verification Duration
The duration of a verification is impacted by:

• The size of the code

• The number of global variables

• The nesting depth of the variables (the more nested they are, the longer
it takes)

• The depth of the call tree of the application

• The “intrinsic complexity” of the code, particularly with regards to
arithmetic manipulation.

The fact that so many factors are involved makes it impossible to derive a
precise formula to calculate verification duration. Following sub section try
to give some hints to reduce time of a verification.

An Ideal Application Size
There always is a compromise between the time and resources required to
verify an application, and the resulting selectivity. The larger the project size,
the broader the approximations made by PolySpace. These approximations
enable PolySpace to extend the range of project sizes it can manage and to
solve traditionally incomputable problems. However, they also mean that the
benefits derived from verifying the whole of a large application have to be
balanced against the loss of precision which results.

7-9

7 Troubleshooting Verification Problems

This is why we recommend that you begin with package by package
verifications. The maximum recommended application size fifty thousand
lines of code. For such applications, approximations should not be too
significant. Take care that sometimes the duration of a verification may not
be reasonable.

Experience suggests that subdividing an application prior to verification
will typically have a beneficial impact on selectivity - that is, more red,
green, and gray checks, fewer orange warnings, and therefore more efficient
bug detection.

A compromise between selectivity and size

Why Should there be an Optimum Size?
PolySpace has been used to verify numerous applications with greater than
one hundred thousand lines of code. However, as project sizes become very
large PolySpace Server

• makes broader approximations, producing more oranges

• can take much more time to verify the application.

7-10

Reducing Verification Time

PolySpace is most effective when it is used as early as possible in the
development process, i.e. BEFORE any other form of testing.

When a small module (file, piece of code, package) is verified using PolySpace,
the focus should be on the red and gray checks. Orange unproven checks at
this stage are of a very useful interest, as most of them deal with robustness
of the application. They will change to red, gray or green as the project
progresses and more and more modules are integrated.

During the integration process, there might be a point where the code becomes
so large (maybe 50000 lines of code or more) that the verification of the whole
project is not achievable within a reasonable amount of time. Then there
are two options.

• Stop the use of PolySpace at this stage (many of the benefits have been
achieved already.)

• Verify subsets of the code.

Selecting a Subset of Code
If a project is subdivided into logical sections by considering data flow,
the total verification time will be considerably shorter than for the project
considered in one pass. (See also: “Volatile Variables” on page 5-8 , “Automatic
Stubbing” on page 5-5)

In such an application, there are two distinct concepts to consider:

• function entry-points — Function entry-points refer to the PolySpace
execution model since they are started concurrently, without any
assumption regarding sequence or priority. They represent the beginning
of your call tree;

• data entry-points — Regard lines in the code where data is acquired as
"data entry points".

Consider the examples below.

Example 1

Procedure complete_treatment_based_on_x(input : integer) is
begin

7-11

7 Troubleshooting Verification Problems

thousand of line of computation...
end

Example 2

procedure main is
begin
x:= read_sensor();
y:= complete_treatment_based_on_x(x);

end

Example 3

REGISTER_1: integer;
for REGISTER_1 use at 16#1234abcd#;
procedure main is
begin
x:= REGISTER_1;
y:= complete_treatment_based_on_x(x);

end

In each case, the "x" variable is a data entry point and “y” is the consequence
of such an entry point. "y" may be formatted data, due to a very complex
manipulation of x.

Since x is volatile, a probable consequence will be that y will contain all
possible formatted data. An approximation could be to completely remove the
procedure complete_treatment_based_on_x and let automatic stubbing work:
it will then assign a full range data to y directly.

-- removed body of complete_treatment_based_on_x
procedure main is
begin
x:= ... -- what ever;
y:= complete_treatment_based_on_x(x); -- now stubbed!
end

7-12

Reducing Verification Time

Some Consequences

• (-) A slight loss of precision on y. PolySpace will now consider all possible
values for y, including the formatted ones that were present at the first
verification.

• (+) A huge investigation of the code is not necessary to isolate a meaningful
subset. Any application can be split logically in this way.

• (+) No functional modules are lost.

• (+) The results will still be correct because there is no need to remove any
thread affecting (change) shared data.

• (+) The complexity of the code is considerably reduced.

• (+) A high precision level (say O2) can be maintained.

Typical Examples of Removable Components, According to the
Logic of the Data

• Error management modules. These modules often contain a big
array of structures that are accessed through an API, but return only a
Boolean value. By removing the API code and retaining the prototype,
the automatically generated stub will be assumed to return a value in
the range [-2^31, 2^31-1], which includes 1 and 0. The procedure will be
considered to return all possible answers, just like reality;

• Buffer management for mailboxes coming from missing code.
Suppose an application reads a huge buffer of 1024 char, and then uses it
to populate 3 small arrays of data, using a very complicated algorithm
before passing it to the main module. If the buffer is excluded from the
verification and the arrays are initialized with random values instead, then
the verification of the remaining code will just be the same.

Subdivide According to Data-Flow
Consider the following example.

7-13

7 Troubleshooting Verification Problems

In this application, variables 1, 2 and 3 can vary between the following ranges:

Var1 Between 0 and 10
Var2 Between 1 and 100
Var3 Between –10 and 10

Specification of Module A:

Module A consists of an algorithm which interpolates between var1 and var2.
That algorithm uses var3 as an exponential factor, so when var1 is equal to 0,
the result in var4 is also equal to 0.

As a result, var4, var5 and var6 are produced with the following specifications:

7-14

Reducing Verification Time

Ranges var4
var5
var6

Between —60 and 110
Between 0 and 12
Between 0 and 100

Properties And a set of
properties between
variables

• If var2 is equal to 0, than
var4>var5>5.

• If var3 is greater than 4, than
var4<var5<12

• ...

Subdivision in accordance with data flow allows modules A and B to be
verified separately.

• A will use variables 1, 2 and 3 initialized respectively to [0;10], [1;100]
and [10;10]

• B will use variables 4, 5 and 6 initialized respectively to [-60;110], [0;12]
and [10;10]

The consequences:

• (-) A slight loss of precision on the B module verification, because now all
combinations for variables 4, 5 and 6 are considered:

- It includes all of the possible combinations.

- It also includes those that would have been restricted by the A module
verification.

• For instance. If the B module included the test

• “If var2 is equal to 0, than var4>var5>5”

• then the dead code on any subsequent “else” clause would not be detected.

• (+) An in depth investigation of the code is not necessary to isolate
a meaningful subset. It means that a logical split is possible for any
application, in accordance with the logic of the data

• (+) The results remain valid (because there no need to remove (say) a
thread that will change shared data)

7-15

7 Troubleshooting Verification Problems

• (+) The complexity of the code is reduced by a significant factor

• (+) The maximum precision level can be retained.

Typical examples of removable components:

• Error management modules. A function has_an_error_already_occurred
might return TRUE or FALSE. Such a module may contain a big array of
structures which are accessed through an API. The removal of the API code
with the retention of the prototype will result in the PolySpace verification
producing a stub which returns [-2^31, 2^31-1]. This clearly includes 1
and 0 (yes and no). The procedure has_an_error_already_occurred will
therefore return all possible answers, just like the code would at execution
time.

• Buffer management for mailboxes coming from missing code. Suppose a
large buffer of 1024 char is read, and the data is then collated into 3 small
arrays of data using a very complicated algorithm. This data is then given
to a main module for treatment. For the PolySpace Server verification, the
buffer can be removed and the 3 arrays initialized with random values.

• Display modules.

Subdivide According to Real-Time Characteristics
Another way of splitting an application is to isolate files which contain only a
subset of tasks, and to verify each subset separately.

If a verification is initiated using only a few tasks, PolySpace Server will lose
information regarding the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and T2 is scheduled to read it at a particular moment,
subsequent operations in T2 will be impacted by the values of x.

As an example, consider that T1 can write either 10 or 12 into x and that
T2 can both write 15 into x and read the value of x. There are two ways to
achieve a sound standalone verification of T2.

• x could be declared as volatile in order to take into account all possible
executions. Otherwise x will take only its initial value or x variable

7-16

Reducing Verification Time

will remain constant, and T2’s verification will be a subset of possible
execution paths. You might have precise results, but it will only include
one scenarioamong all possible states for the variable x.

• x could be initialized to the whole possible range [10;15], and then the
T2entry-point called. This is accurate if x is calibration data.

Subdivide According to Files
Simply extract a subset of files and perform a verification either:

• using entry-points, or

• by creating a “main” that calls randomly all functions that are not called by
any other within this subset of code.

This method may look too simple to be efficient but it can produce good results
when the aim is to find red errors and bugs in gray code.

What are the Benefits of these Methods?
It may be desirable to split the code

• To reduce the verification time for a particular precision mode

• To reduce the number of oranges (see next two sections for details)

The problems subdivision may bring are that

• Orange checks can result from a lack of information regarding the
relationship between modules, tasks or variables

• Orange checks can result from using too wide a range of values for stubbed
functions

When the Application is Incomplete
When the code consists of a small subset of a larger project, a lot of procedures
will be automatically stubbed. This is done according to the specification or
prototype of the missing functions, and therefore PolySpace assumes that all
possible values for the parameter type can be returned.

7-17

7 Troubleshooting Verification Problems

Consider two 32 bit integers “a” and “b”, which are initialized with their full
range due to missing functions. Here, a*b would cause an overflow, because
“a” and “b” can be equal to 2^31. The number of incidences of these “data set
issue” orange check can be reduced by precise stubbing.

Now consider a procedure f which modifies its input parameters “a” and “b”,
both of which are passed by reference. Suppose that “a” might be modified
to any value between 0 and 10, and “b” to any value between -10 and 10.
In an automatically stubbed function, the combination a=10 and b=10 is
possible even though it might not be possible with the real function. This
can introduce orange checks in a code snippet such as 1/(a*b - 100), where
the division would be orange.

• So - even where precise stubbing is used, verifying a small piece of
application might introduce extra orange checks. However, the net effect
from reducing the complexity will be to reduce the total number of orange
checks.

• When using the default stubbing, the increase in the number of orange
checks as the result of this phenomenon tends to be more pronounced.

Considering the Effects of Application Code Size
PolySpace Server can make approximations when computing the possible
values of the variables, at any point in the program. Such an approximation
will always use a superset of the actual possible values.

For instance, in a relatively small application, PolySpace Server might retain
very detailed information about the data at a particular point in the code, so
that for example the variable VAR can take the values { -2 ; 1 ; 2 ; 10 ; 15 ;
16 ; 17 ; 25 }. If VAR is used to divide, the division is green (because 0 is
not a possible value).

If the program being verified is large, PolySpace Server would simplify the
internal data representation by using a less precise approximation, such
as [-2 ; 2] U {10} U [15 ; 17] U {25} . Here, the same division appears as an
orange check.

If the complexity of the internal data becomes even greater later in the
verification, PolySpace Server might further simplify the VAR range to (say)
[-2 ; 20].

7-18

Reducing Verification Time

This phenomenon leads to the increase or the number of orange warnings
when the size of the program becomes large.

Note The amount of simplification applied to the data representations also
depends on the required precision level (O0, O2), PolySpace Server will adjust
the level of simplification, for example:

• -O0 — shorter computation time,

• -O2 — fewer orange warnings.

• -O3 — fewer orange warnings and longer computation time.

7-19

7 Troubleshooting Verification Problems

7-20

8

Reviewing Verification
Results

• “Before You Review PolySpace Results” on page 8-2

• “Opening Verification Results” on page 8-8

• “Reviewing Results in Assistant Mode” on page 8-19

• “Reviewing Results in Expert Mode” on page 8-26

• “Generating Reports of Verification Results” on page 8-37

• “Using PolySpace Results” on page 8-41

8 Reviewing Verification Results

Before You Review PolySpace Results

In this section...

“Overview: Understanding PolySpace Results” on page 8-2
“Why Gray Follows Red and Green Follows Orange” on page 8-3
“What is the Message and What does it Mean?” on page 8-4
“What is the Ada Explanation?” on page 8-5

Overview: Understanding PolySpace Results
PolySpace software presents verification results as colored entries in the
source code. There are four main colors in the results:

• Red – Indicates code that always has an error (errors occur every time
the code is executed).

• Gray – Indicates unreachable code (dead code).

• Orange – Indicates unproven code (code might have a runtime error).

• Green – Indicates code that never has a runtime error (safe code).

This section explains how to analyze these colors. There are four rules to
remember:

• An instruction is verified only if no runtime error was detected in the
previous instruction.

• The verification assumes that each runtime error causes a “core dump.”
The corresponding instruction is considered to have stopped, even if the
actual run time execution of the code might not stop. This means that
red checks are always followed by gray checks, and orange checks only
propagate the green parts through to subsequent checks.

• Always focus on the message given by the verification, and do not jump to
false conclusions. You must understand the color of a check step by step,
until you find the root cause of the problem.

• Always determine an explanation by examining the actual code. Do not
focus on what the code is supposed to do.

8-2

Before You Review PolySpace® Results

Why Gray Follows Red and Green Follows Orange
This section explains why gray checks follow red checks, and how green
checks are propagated out of orange ones.

In the example below, consider why:

• the gray checks follow the red in the red function.

• there are green checks relating to the array.

procedure red is
X: integer;
begin
X:= 1 / X;
X:= X + 1;
end;

function read_an_input return integer;
procedure propagate is
X: Integer;
Y: array (0..99) of Integer;;
begin
X:= Read_An_input;
Y(X):= 0; -- [array index within bounds]
Y(X):= 0;
end main;

Let’s detail each line of code for:

The red function:

• When PolySpace divides by X, X has not been initialized. Therefore the
corresponding check (Non Initialized Variable) on X is red;

• As a result all possible execution paths are stopped, because they all
produce an RTE.

The propagate function:

• X is assigned the value of Read_An_Input. After this assignment, X ~
[-2^31, 2^31-1];

• At the first array access, an “out of bounds” error is possible since X can be
equal to (say) -3 as well as 3;

• All conditions leading to an RTE are assumed to have been truncated - they
are no longer considered in the verification. So on the following line, the
executions for which X ~ [-2^31, -1] and [100, 2^31-1] are stopped;

8-3

8 Reviewing Verification Results

• Consequently at the next instructions X ~ [0, 99];

• Hence at the second array access, the check is green because X ~ [0, 99].

Summary
Green checks can be propagated out of orange checks.

Note When doing manual stubbing and by using assert, you can use value
propagation to restrict input values for data.

See “Using Pragma Assert to Set Data Ranges” on page 4-8.

What is the Message and What does it Mean?
PolySpace numbers the results in the same order in which an execution would
have performed the associated operations.

Consider the instruction: x := x + 1;

In each case, PolySpace first checks for a potential NIV (Non Initialized
Variable) for x, then checks the potential OVFL (overflow). An awareness
of such sequences will help to understand the message which PolySpace is
presenting before going on to assess what that means for the code.

In the example below, the orange NIV on X in the test:

if (x > 101)

does not mean PolySpace does not know the value of X, which might be the
conclusion of a hasty analysis.

So - what does it mean?

function Read_An_Input return integer;
procedure Main is
X: Integer;

begin
if (Read_An_input) then

8-4

Before You Review PolySpace® Results

X := 100;
end if;
if (X > 101) then -- [orange on NIV : non initialised variable]
X : = X + 1; -- gray code

end if;
end Main;

Explanation
When you click on the check under the Viewer, you see the category of the
check. Here, the category is NIV (Non Initialized Variable). However,
PolySpace may well verify subsequent lines of code, and continue with an
understanding of the possible values as if initialization has taken place.

The correct analysis of this result might be that if X has been initialized, the
only possible value for X is { 100 }, which is not greater than 101, so the rest of
the code is gray. Hence we can conclude that PolySpace did know the values.

Summary

• FALSE: if "(x > 101)" means: PolySpace does not know anything.

• TRUE: if "(x > 101)" means: PolySpace does not know if X has been
initialized.

The first rules of reviewing results are: focus on the message given by
PolySpace and do not focus on a speedy interpretation.

What is the Ada Explanation?
Try to explain results based on the code and not on:

• A physical action,

• A particular configuration, data calibration,

• Or any other reason than the code itself.

Concentrate on the source code only - remember, PolySpace knows nothing of
the environment in which the code will be executed.

8-5

8 Reviewing Verification Results

In the example below what is the explanation of the dead code (gray code)
following the "if" statement?

function Read_An_Input return integer;
procedure Main is
X: Integer;
Y: array (0..99) of Integer;
begin
X := Read_An_input;
Y(X) := 0; -- [array index may be without its bounds] [x is
initialized]
Y(X-1):= (1 / X) + X ; [array index is within its bounds]
if (X = 0) then
Y(X) := 1; -- this line is unreachable
end if;
end Main;

This is a method you can use to understand any color:

1 First Step: The line containing the access to the Y array is unreachable
(this line is unreachable)

• So - the test to assess whether x is equal to 0 is always false

• Now, it would be easy to jump to the conclusion that this results from
input data which is always different from 0. However, Read_An_Input
can be any value in the full integer range, so this is not the right
explanation.

• X has been assigned to its full range, but the test assumes that X is
never equal to 0 at this line. Why?

2 Second Step: “Why is the test always false?"

• After the variable definitions, it can be seen that the first array access is

orange: before this line X ∈ − −[,]2 2 131 31
because of the Read_An_Input

function, and afterwards, X ∈[,]0 99 (see Examples “Example D” and
“Example E”)

• So X ∈[,]0 99 just after the first array access.

8-6

Before You Review PolySpace® Results

• The next operation to be checked by PolySpace Server is the addition “
+ X” which is green

• The next operation checked after that will be the division by X which is
orange because X ∈[,]0 99 . So after the division, X ∈[,]1 99 . The orange
will truncate all execution paths that lead to a runtime error, so that in
our example, all instances where X is equal to 0 are stopped.

3 Third Step: The second array index is green and therefore explains why
the test is always false.

When the assignment sign is reached, X ∈[,]1 99 and hence the array
access is green.

4 Conclusion: The user has found a bug! The dead code has shown that the
test should be performed before the division.

Note You must explain a color step by step, until you find the root
cause, and focus on explanations within the code only. Try to exclude the
knowledge about what the code actually does in its execution environment.

Note In this example, all results are located in the same procedure. The
same approach is valid if a check is to be verified involving a procedure called
by others. Use the "called by" call tree to help in the analysis of the results.

8-7

8 Reviewing Verification Results

Opening Verification Results

In this section...

“Downloading Results from Server to Client” on page 8-8
“Opening Verification Results” on page 8-11
“Exploring the Viewer Window” on page 8-11
“Selecting Viewer Mode” on page 8-15
“Setting Character Encoding Preferences” on page 8-15

Downloading Results from Server to Client
When you run a verification on a PolySpace server, the results are stored on
the server. Before you can view your results, you must download the results
file from the server to the client.

Note If you download results before the verification completes, you get
partial results and the verification continues.

To download verification results to your client system:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

8-8

Opening Verification Results

2 Right-click the job you want to view, then select Download Results from
the context menu.

Note To remove the job from the queue after downloading your results,
select Download Results And Remove From Queue from the context
menu.

The Browse For Folder dialog box appears.

8-9

8 Reviewing Verification Results

3 Select the folder into which you want to download results.

4 Click OK to download the results and close the dialog box.

When the download completes, a dialog box appears asking if you want to
open the PolySpace Viewer.

5 Click Yes to open the results.

Once you have downloaded results, they remain on the client, and you can
review them at any time using the PolySpace Viewer.

8-10

Opening Verification Results

Opening Verification Results
You use the PolySpace Viewer to review the results of your verification.

Note You can also open the Viewer from the Launcher by clicking the Viewer
icon in the Launcher toolbar with or without an open project.

To open the verification results:

1 Double-click the PolySpace Viewer icon:

2 Select File > Open.

3 In the Please select a file dialog box, select the results file you want
to view.

4 Click the Open button.

The results appear in the Viewer window.

Exploring the Viewer Window

• “Overview” on page 8-11

• “Procedural Entities View” on page 8-13

Overview
The PolySpace Viewer looks like:

8-11

8 Reviewing Verification Results

The appearance of the Viewer toolbar depends on the Viewer mode. By
default, the expert mode toolbar displays.

8-12

Opening Verification Results

In both expert mode and assistant mode, the Viewer window has six sections
below the toolbar. Each section provides a different view of the results. The
following table describes these views.

This view... Displays...

Procedural entities view (lower left) List of the diagnostics (checks) for
each file and function in the project

Source code view (lower right) Source code for a selected check in
the procedural entities view

Coding review progress view (upper
left)

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check view (upper right) Details about the selected check
Variables view Information about the global

variables declared in the source code

Note The file that you use in
this tutorial does not have global
variables.

Call tree view Tree structure of function calls

You can resize or hide any of these sections.

Procedural Entities View
The procedural entities view, in the lower-left part of the Viewer window,
displays a table with information about the diagnostics for each file in the
project. The procedural entities view is also called the RTE (run-time error)
view. The procedural entities view looks like:

8-13

8 Reviewing Verification Results

The package RUNTIME_ERROR is red because its has a run-time error.
PolySpace software assigns a file the color of the most severe error found in
that file. The first column of the table is the procedural entity (the file or
function). The following table describes some of the other columns in the
procedural entities view.

Column
Heading

Indicates

Number of red checks (for operations where an error always
occurs)
Number of gray checks (for unreachable code)

Number of orange checks (warnings for operations where
an error might occur)
Number of green checks (for operations where an error
never occurs)

Total number of red, green, and gray checks (an indication
of the level of proof)

Tip If you see three dots in place of a heading, , resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

8-14

Opening Verification Results

Note You can select which columns appear in the procedural entities view
by editing the preferences. To learn how to add a Reviewed column, see
“Making the Reviewed Column Visible” on page 8-30.

What you select in the procedural entities view determines what displays in
the other views. In the examples in this chapter, you learn how to use the
views and how they interact.

Selecting Viewer Mode
You can review verification results in expert mode or assistant mode:

• In expert mode, you decide how you review the results.

• In assistant mode, PolySpace software guides you through the results.

You switch from one mode to the other by clicking the appropriate button
in the Viewer toolbar:

Setting Character Encoding Preferences
If the source files you want to verify were created on an operating system that
uses different character encoding than your current system (for example,
when viewing files containing Japanese characters), you will receive an error
message when you view the source file or run certain macros.

The Character encoding option allows you to view source files created on an
operating system that uses different character encoding than your current
system.

To set the character encoding for a source file:

8-15

8 Reviewing Verification Results

1 Select Edit > Preferences in the Viewer.

The Preferences PolySpace Viewer dialog box appears.

2 Select the Character encoding tab.

The Character encoding tab appears.

8-16

Opening Verification Results

3 Select the character encoding used by the operating system on which the
source file was created.

8-17

8 Reviewing Verification Results

4 Click OK.

Note You must close and restart the viewer to use the new character
encoding settings.

5 Close and restart the Viewer.

8-18

Reviewing Results in Assistant Mode

Reviewing Results in Assistant Mode

In this section...

“What Is Assistant Mode?” on page 8-19
“Switching to Assistant Mode” on page 8-19
“Selecting the Methodology and Criterion Level” on page 8-20
“Exploring Methodology for Ada” on page 8-21
“Defining a Custom Methodology” on page 8-23
“Reviewing Checks” on page 8-24

What Is Assistant Mode?
In assistant mode, PolySpace software chooses the checks for you to review
and the order in which you review them. PolySpace software presents checks
to you in this order:

1 All red checks

2 All blocks of gray checks (the first check in each unreachable function)

3 Orange checks according to the selected methodology and criterion level

For more information about methodologies and criterion levels, see “Selecting
the Methodology and Criterion Level” on page 8-20.

Switching to Assistant Mode
If the Viewer is in assistant mode, the mode toggle button displays Expert. If
the Viewer is in expert mode, the mode toggle button displays Assistant. To
switch from expert mode to assistant mode:

• Click the Viewer mode button .

The Viewer window toolbar displays controls specific to assistant mode.

8-19

8 Reviewing Verification Results

The controls for assistant mode include:

• A menu for selecting the review methodology for orange checks

• A slider for selecting the criterion level within that methodology

• A check box for skipping gray checks

• Arrows for navigating through the reviews

Selecting the Methodology and Criterion Level
A methodology is a named configuration set that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology has
three criterion levels. Each level specifies the number of orange checks for a
given category. The levels correspond to different development phases that
have different review requirements. To select a methodology and level:

1 Select Methodology for Ada from the methodology menu.

2 Select the appropriate level on the level slider.

For the configuration Methodology for Ada, the three levels are:

Level Description

1 Fresh code
2 Unit tested code
3 Code Review

8-20

Reviewing Results in Assistant Mode

These three levels correspond to phases of the development process.

Exploring Methodology for Ada
A methodology defines the number of orange checks that you review in
assistant mode. Each methodology has three criterion levels that specify
increasing levels of review. These levels correspond to different development
phases that have different review requirements.

Note You cannot change the parameters defined in the Methodology for Ada,
but you can create your own custom methodologies.

To examine the configuration for Methodology for Ada:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box appears.

2 Select the Assistant configuration tab.

The configuration for Methodology for Ada appears.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

8-21

8 Reviewing Verification Results

For example, the table specifies that you review ten orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the Viewer toolbar (in assistant mode).

For the configuration Methodology for Ada, the criterion names are:

8-22

Reviewing Results in Assistant Mode

Criterion Name in the Tooltip

1 Fresh code
2 Unit tested
3 Code Review
These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Defining a Custom Methodology
A methodology defines the number of orange checks that you review in
assistant mode. You cannot change the predefined methodologies, such as
Methodology for Ada, but you can define your own methodology.

To define a custom methodology:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box appears.

2 Select the Assistant configuration tab.

3 In the Configuration set drop-down menu, select Add a set.

The Create a new set dialog box appears.

8-23

8 Reviewing Verification Results

4 Enter a name for the new configuration set, then click Enter.

5 Enter the number checks to review for each type, and each criterion level.

6 Click OK to save the methodology and close the dialog box.

Reviewing Checks
In assistant mode, you review checks in the order in which PolySpace software
presents them:

1 All reds

2 All blocks of gray checks (the first check in each unreachable function)

Note You can skip gray checks by selecting the Skip gray checks check
box in the toolbar.

3 Orange checks according to the selected methodology and criterion level

To navigate through these checks:

1 Click the forward arrow .

• The procedural entities view (lower left), expands to show the current
check.

8-24

Reviewing Results in Assistant Mode

• The source code view (lower right) displays the source code for this check.

• The current check view (upper right) displays information about this
check.

Note You can display the calling sequence and track review progress. See
“Reviewing Results in Expert Mode” on page 8-26.

2 Review the current check.

3 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box appears asking if you want to start again
from the first check.

4 Click No.

8-25

8 Reviewing Verification Results

Reviewing Results in Expert Mode

In this section...

“What Is Expert Mode?” on page 8-26
“Switching to Expert Mode” on page 8-26
“Selecting a Check to Review” on page 8-26
“Displaying the Calling Sequence” on page 8-28
“Tracking Review Progress” on page 8-29
“Making the Reviewed Column Visible” on page 8-30
“Filtering Checks” on page 8-33
“Types of Filters” on page 8-33
“Creating a Custom Filter” on page 8-35

What Is Expert Mode?
In expert mode, you can see all checks from the verification in the PolySpace
Viewer. You decide which checks to review and in what order to review them.

Switching to Expert Mode
If the Viewer is in expert mode, the mode toggle button displays Assistant. If
the Viewer is in assistant mode, the mode toggle button displays Expert. To
switch from assistant to expert mode:

• Click the Viewer mode button:

The Viewer window toolbar displays buttons and menus specific to expert
mode.

Selecting a Check to Review
To review a check in expert mode:

8-26

Reviewing Results in Expert Mode

1 In the procedural entities section of the window, expand any file containing
checks.

2 Expand the procedure containing the check you want to review.

A color-coded list of the checks performed on the procedure appears:

Each item in the list of checks has an acronym that identifies the type of
check and a number. For example, in EXCP.5, EXCP stands for Arithmetic
Exception. For more information about different types of checks, see
“Check Descriptions” in the PolySpace Client/Server for Ada Reference.

3 Click the check you want to review.

The source code view displays the section of source code where this error
occurs.

8-27

8 Reviewing Verification Results

4 Click the colored check in the code.

An message box appears describing the error.

Displaying the Calling Sequence
You can display the calling sequence that leads to the code associated with
a check. To see the calling sequence for a check:

1 Expand the package containing the check you want to review.

2 Click the check you want to review.

3 Click the call graph button in the toolbar.

8-28

Reviewing Results in Expert Mode

A window displays the call graph.

The call graph displays the code associated with the check.

Tracking Review Progress
You can keep track of the checks that you have reviewed by marking them. To
mark that you have reviewed a check:

1 Expand the procedure containing the check you want to review.

2 Click the check you want to review.

A table with statistics about the review progress for that category and
severity of error appear in the upper-left part of the window.

The Count column displays a ratio and the Progress column displays the
equivalent percentage. The first row displays the ratio of reviewed checks
to the total number of checks that have the same color and category as the
current check. In this example, it displays the ratio of reviewed red EXCP
checks to total red EXCP errors in the project.

The second row displays the ratio of reviewed checks to total checks that
have the same color as the current check. In this example, this is the ratio
of red errors reviewed to total red errors in the project. The third row
displays the ratio of the number of green checks to the total number of
checks, providing an indicator of the reliability of the software.

8-29

8 Reviewing Verification Results

Information about the current check appears in the upper-right part of
the Viewer window.

3 Enter a comment in the comment box.

4 Select the check box to indicate that you have reviewed this check.

The Coding review progress part of the window updates the ratios of
errors reviewed to total errors.

Making the Reviewed Column Visible
You can change the PolySpace Viewer preferences so that the procedural
entities part of the window displays a Reviewed column.

1 Select Edit > Preferences.

2 Select the Table options tab.

3 Under Display columns in RTE view, select the Reviewed check box.

Now the Table options tab looks like:

8-30

Reviewing Results in Expert Mode

4 Click OK to apply the preference and close the dialog.

A column of check boxes appears in the Procedural entities view.

8-31

8 Reviewing Verification Results

Tip If you do not see this column, resize Procedural entities so that you see
the column. Resize the column to see the Reviewed label.

8-32

Reviewing Results in Expert Mode

Note Selecting a check box in the Reviewed column automatically:

• Selects the check box for that check in the current check view (upper-right
part of the window).

• Updates the counts in the coding review progress view (upper-left part
of the window).

Filtering Checks
You can filter the checks that you see in the Viewer so that you can focus
on certain types of checks. PolySpace software provides three predefined
composite filters, a custom composite filter, and several individual filters.

The default filter is User def.

To filter checks, select a filter from the filter menu.

Types of Filters
There are three types of filters:

• “Individual Filters” on page 8-34

• “Composite Filters” on page 8-34

• “Custom Filters” on page 8-34

8-33

8 Reviewing Verification Results

Individual Filters
You can use an individual filter to display or hide a given check category,
such as VOA. When a filter is enabled, that check category does not display.
For example, when the VOA filter is enabled, VOA checks do not display.
When the filter is disabled, that check category displays. For example, when
the VOA filter is disabled, VOA checks display. You can also filter by check
color. To enable or disable an individual filter, click the toggle button for that
filter on the toolbar.

Tip The tooltip for a filter button tells you what filter the button is for and
whether the filter is enabled or disabled.

Note When you filter a check category, some red checks with that category
will still display.

Composite Filters
Composite filters combine individual filters, allowing you to display or hide
groups of checks.

Use this filter... To...

Alpha Display all checks
Beta Hide NIV, NIVL, NIP, Scalar OVFL,

and Float OVFL checks
Gamma Display red and gray checks
User def Hide checks as defined in a custom

filter that you can modify

Custom Filters
The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def and is the default composite filter. By
default, the custom filter hides the NIV local, COR, NIV other, and NTL
checks as shown in the following figure.

8-34

Reviewing Results in Expert Mode

To modify the custom filter, see “Creating a Custom Filter” on page 8-35.

Creating a Custom Filter
The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def.

To modify the custom filter:

1 Select User def from the composite filters menu.

2 Select Edit > Custom filters.

The Custom filter setup dialog box appears.

8-35

8 Reviewing Verification Results

3 Clear the filters for the checks that you want to display. For example, if you
clear the Out of Bound Array Index Checks box, these checks display.

Note You do not have to change any of the selections for this tutorial.

4 Select the filters for the checks that you do not want to display.

5 Click OK to apply the changes and close the dialog box.

PolySpace software saves the custom filter definition in the Viewer
preferences.

8-36

Generating Reports of Verification Results

Generating Reports of Verification Results
You can generate a Microsoft® Excel® report of the verification results.

To generate an Excel report of your verification results:

1 Navigate to the PolySpace-Doc folder in your results directory. For
example:polypace_project\results\PolySpace-Doc.

The directory should have the following files:

Example_Project_Call_Tree.txt
Example_Project_RTE_View.txt
Example_Project_Variable_View.txt
Example_Project-NON-SCALAR-TABLE-APPENDIX.ps
PolySpace_Macros.xls

The first three files correspond to the call tree, RTE, and variable views
in the PolySpace Viewer window.

2 Open the macros file PolySpace_Macros.xls.

A security warning dialog appears.

3 Click Enable Macros.

A spreadsheet appears. The top part of the spreadsheet looks like:

8-37

8 Reviewing Verification Results

4 Specify the report options you want, then click Generate PolySpace
Results Synthesis.

The synthesis report combines the RTE, call tree, and variables views into
one report.

TheWhere is the PolySpace RTE View text file dialog box appears.

5 In Look in, navigate to the PolySpace-Doc folder in your results directory.
For example:polypace_project\results\PolySpace-Doc.

6 Select Project_RTE_View.txt.

7 Click Open to close the dialog box.

TheWhere should I save the analysis file? dialog box appears.

8 Keep the default file name and file type.

9 Click Save to close the dialog box and start the report generation.

Microsoft Excel opens with the spreadsheet that you generated. This
spreadsheet has several worksheets:

8-38

Generating Reports of Verification Results

8-39

8 Reviewing Verification Results

10 Select the Check Synthesis tab to view the worksheet showing statistics
by check category:

8-40

Using PolySpace® Results

Using PolySpace Results

In this section...

“Review Runtime Errors: Fix Red Errors” on page 8-41
“Review Dead Code Checks: Why Gray Code is Interesting” on page 8-42
“Reviewing Orange: Automatic Methodology” on page 8-44
“Selective Orange Review: Finding the Maximum Number of Bugs in One
Hour” on page 8-46
“Exhaustive Orange Review at Unit Phase” on page 8-48
“Exhaustive Orange Review at Integration Phase” on page 8-49
“Integration Bug Tracking” on page 8-51
“How to Find Bugs in Unprotected Shared Data” on page 8-51
“Dataflow Verification” on page 8-52
“Potential Side Effect of a Red Error” on page 8-53
“Checks on Procedure Calls with Default Parameters” on page 8-54
“_INIT_PROC Procedures” on page 8-56

Review Runtime Errors: Fix Red Errors
All Runtime Errors highlighted by PolySpace verification are determined
by reference to the language standard, and are sometimes implementation
dependant — that is, they may be acceptable for a particular compiler but
unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation
of 127+1 cannot be 128, but depending on the environment a “wrap around”
might be performed with a resulting value of -128.

This result is of course mathematically incorrect. If the value represents the
altitude of a plane, this could result in a disaster.

By default, PolySpace verification doesn’t make assumptions about the way a
variable is used. Any deviation from the recommendations of the language
standard is treated as a red error, and must therefore be corrected.

8-41

8 Reviewing Verification Results

PolySpace verification identifies two kinds of red checks

• Red errors which are compiler-dependant in a specific way. On some
occasions a PolySpace option may be used to allow particular compiler
specific behavior, and on others the code must be corrected in order to
comply. An example of a PolySpace option to permit compiler specific
behavior would be the option to force “IN/OUT” ADA function parameters
to be initialized. Examples in C include options to deal with constant
overflows, shift operation on negative values, etc.

• All other red errors must be fixed. They are bugs.

Most of the bugs you’ll find are easy to correct once they are identified.
PolySpace verification identifies bugs regardless of their consequence, or of
the ease with which they can be corrected.

Review Dead Code Checks: Why Gray Code is
Interesting

• “Functional Bugs Can Be Found in Gray Code” on page 8-42

• “Structural Coverage” on page 8-44

Functional Bugs Can Be Found in Gray Code
PolySpace verification finds different types of dead code. Common examples
include:

• Defensive code which is never reached

• Dead code due to a particular configuration

• Libraries which are not used to their full extent in a particular context

• Dead code resulting from bugs in the source code.

The causes of dead code listed in the examples below are taken from critical
applications of embedded software by PolySpace verification.

• A lack of parenthesis and operand priorities in the testing clause can
change the meaning significantly.

8-42

Using PolySpace® Results

• Consider a line of code such as

IF NOT a AND b OR c AND d

Now consider how misplaced parentheses might influence how that line
behaves

IF NOT (a AND b OR c AND d)

IF (NOT (a) AND b) OR (c AND d))

IF NOT (a AND (b OR c) AND d)

• The test of variable inside a branch where the conditions are never met;

• An unreachable “else” clause where the wrong variable is tested in the
“if” statement

• A variable that is supposed to be local to the file but instead is local to
the function

• Wrong variable prototyping leading to a comparison which is always false
(say)

As is the case for red errors, the consequence of dead code and the effort
needed to deal with it is unpredictable. It can vary

• From one week effort of functional testing on target, trying to build
a scenario going into that branch, and wondering why the functional
behavior is altered, to

• A 3 minutes code review discovering the bug.

Again, as for red errors, PolySpace doesn’t measure the impact of dead code.

The tool provides a list of dead code. A short code review will enable you
to place each entry from that list into one of the five categories from the
beginning of this chapter. Doing will identify known dead code and uncover
real bugs.

PolySpace experience is that at least 30% of gray code reveals real
bugs.

8-43

8 Reviewing Verification Results

Structural Coverage
PolySpace software always performs upper approximations of all possible
executions. Therefore even if a line of code is shown in green, there remains a
possibility that it is a dead portion of code. Because PolySpace verification
made an upper approximation, it could not conclude that the code was dead,
but it could conclude that no runtime error could be found.

PolySpace verification will find around 80% of dead code that the developer
would find by doing structural coverage.

PolySpace verification is intended to be used as a productivity aid in dead
code detection. It detects dead code which might take days of effort to find
by any other means.

Reviewing Orange: Automatic Methodology
During a verification, PolySpace is able to automatically highlight some
orange checks considered as potential robustness issues in the code.

The automatic methodology separates a sub part of orange NIVL and orange
OVFL from all oranges checks:

• All NIVL scalar local oranges. These NIV do not concern float, record (and
component) and arrays.

• All OVFL/UNFL scalar oranges between subtypes: conversion of a subtype
in a smaller subtype.

From a Methodology point of view, these checks need to be addressed first. As
PolySpace is very precise on them, we can always deduce that an orange of
this kind is most of the time synonymous of a robustness issue.

Example

1 Package body Test is
2 ATab : array(0..9) of Integer := (Others => 0);
3 function Assign_array(X : integer) return Integer is
4 Y : Integer;
5 begin
6 y := ATab(X - 12); -- Warning UOVFL on operator - given by

8-44

Using PolySpace® Results

7 -- the Automatic methodology
8 return y;
9 end Assign_Array;
10
11 function read_bus_status return boolean; -- function stubbed
12 procedure partial_init(New_Alt : in out Integer) is
13 Y : boolean;
14 begin
15 if read_bus_status then
16 New_Alt := 12;
17 Y := True;
18 else
19 New_Alt := 120;
20 end if;
21 if Y then -- Warning NIVL on Y given by
22 -- the automatic methodology
23 New_Alt := New_Alt * 10;
24 end if;
25 end partial_init;
26 end Test;

In the example above, the automatic methodology filters all orange except:

• The orange UOVFL at line 6. The associated message associated to this
orange says “Scalar variable may underflow/overflow on [conversion from
-2**31.. 2**31-1 to 0..9]”. In this case we have a typical conversion in a
smaller subtype and nothing around shows a defensive code against this
robustness issue.

• The orange NIVL at line 21. The associated message associated to this
orange says “Local variable may be not initialized”. In this case we have
a typical example which leads to a robustness issue if the right branch
is not executed.

Activation and filter location:

In both mode of review (expert or assistant) the automatic methodology
is always active.

Opening the Viewer on results, chose expert mode, select “Alpha” filter and
then, clicking on “I/ ?” button associated to tool tip “Click to hide orange

8-45

8 Reviewing Verification Results

not associated to additional information”, allows to show all oranges and
only coming from the automatic methodology.

Selective Orange Review: Finding the Maximum
Number of Bugs in One Hour
A selective orange review is appropriate for the early stages of development,
when you want to improve the quality of your code while it is being developed.
Performing a selective orange review allows you to find the maximum number
of bugs in a short period of time. For example, if you want to spend the first
hour of the day reviewing a verification that was performed overnight. This
type of review is generally supported by more extensive verification as the
project nears completion.

A selective orange review can generally find about 5 bugs (in orange checks)
during an hour of review.

Choosing What to Review
When performing a selective orange review, focus on the modules that have
the highest selectivity in your application, meaning the highest ratio of (green
+ gray + red) / (total number of checks).

If PolySpace verification finds only one or two orange checks in a module
or function, these checks are probably not caused by “basic imprecision.”
Therefore, it is more likely that you will find bugs in these orange checks than
in those found elsewhere in the code.

Note For each function, PolySpace verification may be better at detecting
some kinds of Runtime Errors than others. For example, one function may
yield precise results for OVFL, but imprecise results for NIV, while a second
function may have the opposite results.

Therefor, you must apply the “high selectivity focus” to each type of error
separately.

8-46

Using PolySpace® Results

Reviewing Oranges Quickly
While performing a selective orange review:

• Spend no more than 5 minutes per orange check.

• Review at least 50 checks an hour.

If you find a check that takes more than a few minutes to understand, it
may be the result of inconclusive PolySpace verification. To maximize the
number of bugs you can find in a limited time, you should move on to another
check. Generally, you should spend no more than 5 minutes on each check,
remembering that your goal is to review at least 50 checks per hour to
maximize the number of bugs found.

Performing a Selective Orange Review
The goal of a selective orange review is to identify the maximum number of
bugs within a short period of time.

To perform a selective orange review:

1 Select one type of RTE, such as Zero Division (ZDV).

2 Click Filter all .

3 Click the type of check you want to review (ZDV in this example).

4 Identify files containing only 1 or 2 orange checks of the selected type.

5 Using the call tree and dictionary, perform a quick code review on each
orange check, spending no more than 5 minutes on each.

Your goal is to identify whether the orange check is a potential bug,
inconclusive check or data set issue.

If the check proves too complicated to explain quickly, it may well be the
result of basic imprecision.

8-47

8 Reviewing Verification Results

6 Once you identify the source of the orange check, select the Verified
checkbox in the PolySpace Viewer, and enter an explanation in the
comment field. For example, “inconclusive,” or “data set issue when
calibration of <x> is set greater than 100.”

7 Select another type of RTE and repeat the procedure.

Note You can use the Beta filter to highlight the types of check most
likely to include critical Runtime Errors.

Exhaustive Orange Review at Unit Phase
An exhaustive orange review during the unit testing phase can identify bugs
not found during the selective orange review. However, the cost of performing
an exhaustive orange review needs to be balanced with the cost leaving a
bug in the code.

An exhaustive orange review typically progresses at a rate of about 50
orange checks per hour. However, an hour spent on an exhaustive check
review is different to an hour spent on a selective orange review in several
significant ways:

• The first 10 minutes of the exhaustive check will be dedicated to the
classification of 2/3 of the orange as false anomalies.

• The last 40 minutes will be used to track more complex bugs.

80% of the orange checks will require only a few seconds of effort before a
conclusion can be reached. These are not integration bugs, so tracking the
cause of an orange check is often much faster than the same activity in a larger
piece of code. The typical time spent reviewing each check is about 1 minute.

Note If you apply coding rules to your project, reviewing PolySpace results
generated by a unit verification normally takes no more than 15 minutes.

8-48

Using PolySpace® Results

Exhaustive Orange Review at Integration Phase
An exhaustive orange during the integration testing phase can identify bugs
not found by a selective orange review. However, the time/cost of performing
an exhaustive orange review needs to be balanced with the cost leaving a
bug in the code.

Cost
Reviewing each orange check will typically take approximately 4-5 minutes .
400 orange checks will therefore require about four days of code review, and
3,000 orange checks will require 25 days.

However, if you review the checks as described in the Selective Orange
Review section, the first 80% of checks will take a much smaller amount of
time to review. You can then decide how far you want to pursue reviewing
the remaining checks.

Method
There are sometimes situations where files contain a particularly high
number of orange checks compared with the rest of the application. This may
well highlight design issues.

Consider the three possible reasons for an orange check:

• Potential bug and Data set issues

• Inconclusive verification

• Basic imprecision

The method described in the following chapter explains how to focus on
finding potential bugs in the orange code. We will focus here on the first
and second types. We are assuming that in the modules containing the most
orange checks, those checks will prove inconclusive. If PolySpace is unable to
draw a conclusion, the implication is often that the code itself is very complex
- which in turn can identify sections of code of low robustness and quality.

8-49

8 Reviewing Verification Results

Real Bugs and Data Sets. If the data set verified reveals real bugs, they
should be corrected. If it highlights potential input bugs (depending on the
input data which might eventually be used), then the source code should be
commented.

Inconclusive Check. The most interesting type of inconclusive check is
identified when PolySpace states that the code is too complicated. In such a
case it is usually true that most orange checks in the problem file are related,
and that patient navigation will always draw the user back to a same cause -
perhaps a function or a variable modified many times. Experience suggests
that such situations often focus on functions or variables which have also
caused trouble earlier in the development cycle.

Consider an example below. Suppose that

• a signed is an integer between -2^31 and 2^31-1

• an unsigned is an integer between 0 and 2^32-1

• The variable "Computed_Speed" is copied into a signed, and afterward
into an unsigned, than signed, than added to another variable, and finally
produces 20 orange overflows (OVFL).

There is no scenario identified which leads to a real bug, but perhaps the
development team knows that there was trouble with this variable during
development and the earlier testing phases. PolySpace has also found this to
be a problem, providing supporting evidence that the code is poorly designed.

Basic Imprecision. On some rare occasions, a module will contain a lot of
similar occurrences of a “basic imprecision”. This is most likely to be caused
by a function close to the edge of an application, or in the stub routines.

In this case, PolySpace can only assist by means of the call tree and dictionary.
This code needs to be reviewed by an alternative activity - perhaps through
additional unit tests or code review with the developer. These checks are
usually local to functions, so their impact on the project as a whole is limited.

Examples of extra activities might be

• Checking an interpolation algorithm in a function

8-50

Using PolySpace® Results

• Checking calibration data consisting of huge constant arrays, which are
manipulated mathematically

Integration Bug Tracking
By default, integration bug tracking can be achieved by applying the selective
orange methodology to integrated code. Each error category will be more
likely to reveal integration bugs, depending on the chosen coding rules for
the project.

For instance, consider a function receives two unbounded integers. The
presence of an overflow can only be checked at integration phase, since at unit
phase the first mathematical operation will reveal an orange check.

Consider these two circumstances:

• When integration bug tracking is performed in isolation, a selective orange
review will highlight most integration bugs. In this case, a PolySpace
verification has been performed integrating tasks.

• When integration bug tracking is performed together with an exhaustive
orange review at unit phase, a PolySpace verification has been performed
on one or more files.

In this second case, an exhaustive orange review will already have been
performed file by file. Therefore, at integration phase only checks that have
turned from green to another color are worth assessing.

For instance, if a function takes a structure as an input parameter, the
standard hypothesis made at unit level is that the structure is well initialized.
This will consequentially display a green NIV check at the first read access to
a field. But this might not be true at integration time, where this check can
turn orange if any context does not initialize these fields.

These orange checks will reveal integration bugs.

How to Find Bugs in Unprotected Shared Data
Based on the list of entry points in a multi-task application, PolySpace
verification identifies a list of shared data and provides several pieces of
information about each entry:

8-51

8 Reviewing Verification Results

• The data type;

• A list of reading and writing accesses to the data through functions and
entry points;

• The type of any implemented protection against concurrent access.

A shared data item is a global data item that is read from or written to by
two or more tasks. It is unprotected from concurrent accesses when one task
can access it whilst another task is in the process of doing so. All the possible
situations are considered below.

• If there is a possible scenario which would lead to such conflict for a
particular variable, then a bug exists and protection is required.

• If there are no such scenarios, then one of the following explanations may
apply:

- The compilation environment guarantees an atomic read/write access on
variable of type less than 1, 2 bytes, and therefore all conflicts concerning
a particular variable type still guarantee the integrity of the variables
content. But beware when porting the code!

- The variable is protected by a critical section or a mutual temporal
exclusion. You may wish to include this information in the PolySpace
launching parameters and reverify.

It is also worth checking whether variables are modified which are supposed
to be constant. Use the variables dictionary.

Dataflow Verification
Data flow verification is often performed within certification processes —
typically in the avionic, aerospace or transport markets.

This activity makes heavy use of two features of PolySpace results, which are
available any time after the Control and Data Flow verification phase.

• Call tree computation

• Dictionary containing read/write access to global variables. (This can also
be used to build a database listing for each procedure, for its parameters,
and for its variables.)

8-52

Using PolySpace® Results

PolySpace software can help you to build these results by extracting
information from both the call tree and the dictionary.

Potential Side Effect of a Red Error
This section explains why when a red error has been found the verification
continues but some cautions need to be taken. Consider this piece of code:

7 package body Main is
8 procedure Main is
9 X: array (1..5) of Integer;
10 Tmp: Integer;
11 Zero: Integer:= 0;
12 begin
13 X:= (1,2,3,4,5);
14 if (X(4) > X(5))
15 then
16 Tmp:= 1 / Zero;
17 end if;
18 end;
19
20 end;

PolySpace works by propagating data sets representing ranges of possible
values throughout the call tree, and throughout the functions in that call tree.
Sometimes, PolySpace internally subdivides the functions for verification, and
the propagation of the data ranges need several iterations (or integration
levels) to complete. That effect can be observed by examining the color of the
checks on completion of each of those levels. It can sometimes happen that:

• PolySpace will detect gray code which exists due to a terminal RTE which
will not be flagged in red until a subsequent integration level.

• PolySpace flags a NTC in red with the content in gray. This red NTC is
the result of an imprecision, and should be gray.

Suppose that an NTC is hard to understand at given integration level (level 4):

• If other red checks exist at level 4, fix them and restart the verification

8-53

8 Reviewing Verification Results

• Otherwise, look back through the results from each previous level to see
whether other red errors can be located. If so, fix them and restart the
verification

Checks on Procedure Calls with Default Parameters
Some checks may be located on procedure calls. They correspond to default
values assigned to parameters of a procedure.

Example

1 package DCHECK is
2 type Pixel is
3 record
4 X : Integer;
5 Y : Integer;
6 end record;
7 procedure MAIN;
8
9 NError : Integer;
10 procedure Failure (Val : Integer := Nerror);
11 procedure MessageFailure (str : String := "");
12 end DCHECK;
13
14 package body DCHECK is
15 type TwentyFloat is array (Integer range 1.. 20) of Float;
16
17 procedure AddPixelValue(Vpixel : Pixel) is
18 begin
19 if (Vpixel.X < 3) then
20 Failure; -- NIV Verified: Variable is initialized
(Nerror)
21 MessageFailure; -- COR Verified: Value is in range (string)
22 end if;
23 end AddPixelValue;
24
25 procedure MAIN is
26 B : Twentyfloat;
27 Vpixel : Pixel;
28 begin

8-54

Using PolySpace® Results

29 NError := 12;
30 Vpixel.X := 1;
31 AddPixelValue(Vpixel);
32 NError := -1;
33 for I in 2 .. Twentyfloat'Last loop
34 if ((I mod 2) = 0) then
35 B(I) := 0.0;
36 if (I mod 2) /= 0 then
37 Failure; -- NIV Unreachable: Variable is not
initialized
38 MessageFailure; -- COR Unreachable: Value is not in range
39 end if;
40 end if;
41 end loop;
42 MessageFailure("end of Main");
43 end MAIN;
44 end DCHECK;

Explanation
In the previous example, at line 20 and 37, checks on the procedure calls
Failure represent the check NIV made on the default parameter N error (a
global parameter).

In the same way, COR checks at line 21 and 38 on MessageFailure represent
verification made by PolySpace on the default assignment of a null string
value on the input parameter.

Note Not all the checks have been moved to procedure calls. Checks remain
on the procedure definition except for the following basic types and values:

• A numerical value (example: 1, 1.4)

• A string (example: “end of main”)

• A character (example: A)

• A variable (example: Nerror).

8-55

8 Reviewing Verification Results

_INIT_PROC Procedures
In the PolySpace viewer, it could be possible to find nodes _INIT_PROC$ in the
“Procedural entities” view. As your compiler, PolySpace generates a function
_INIT_PROC for each record where initialization occurs. When a package
defines many records, each _INIT_PROC is differentiated by $I (I in 1.n).

Example

1 package test is
2 procedure main;
3 end test;
4
5 package body test is
6
7 subtype range_0_3 is integer range 0..3;
8 Vg : Integer := 1;
9 Pragma Volatile(Vg);
10
11 function random return integer;
12 type my_rec1 is
13 record
14 a : integer := 2 + random; -- Unproven OVFL coming from
_INIT_PROC procedure (initialization of V1)
15 b : float := 0.2;
16 end record;
17 V1 : my_rec1;
18 V2 : my_rec1 := (10, 10.10);
19
20 procedure main is
21 Function Random return Boolean;
22 begin
23 null;
24 end;
25 end test;

Explanation
In the previous example, an unproven OVFL on the field a of record my_rec1
has been detected when initializing the global variable V1. It initializes

8-56

Using PolySpace® Results

record of global variable V1 at line 17. Indeed, random procedure could return
any value in the integer type and so, leads to an overflow by adding to 2.
Check is located in the _INIT_PROC node into “Procedural entities” view.

8-57

8 Reviewing Verification Results

8-58

9

Managing Orange Checks

• “Understanding Orange Checks” on page 9-2

• “Reducing Orange Checks in Your Results” on page 9-6

• “Reviewing Orange Checks” on page 9-14

9 Managing Orange Checks

Understanding Orange Checks

In this section...

“What is an Orange Check?” on page 9-2
“Sources of Orange Checks” on page 9-3
“Determining Cause of Orange Checks” on page 9-5

What is an Orange Check?
If a check is orange, it means that the approximate data set assumed by the
verification to represent a variable intersects with the error zone.

Graphical Representation of an Orange Check

Behind this picture, the orange color can reveal any of the situations below.

Note Any an orange check can approximate a check of any other color.

9-2

Understanding Orange Checks

Red
approximated
by orange

Gray
approximated by
orange

Any other
situation: real
orange

Green
approximated by
orange

If PolySpace software attempted to manipulate every possible discrete value
for all variables, the overheads for the verification would be so large that the
problem would become incomputable. PolySpace verification manipulates
polyhedrons representing data sets, and therefore cannot distinguish the
category of an orange. That task is left to you, and is detailed in the following
chapters.

(As a consequence, sometimes you may find an orange check which represents
something which seems an obvious bug, and at other times you may find such
a check which is obviously safe. As far as the mechanism within PolySpace
software is concerned, it simply represents the intersection of two data sets
– which is why you are left to perform the results review to draw these
distinctions.)

Sources of Orange Checks
There are a number of possible causes of orange checks to be considered.

• Potential bug— an orange check can represent a real bug.

Example - loop with division by zero

• Inconclusive check — an orange check can represent a situation where
PolySpace verification is unable to conclude whether a problem exists. It
is sometimes in the nature of software code that it cannot be concluded

9-3

9 Managing Orange Checks

whether there is a potential error. In the example below, the task T1 can
be started before or after T2, so PolySpace verification cannot conclude
without the calling sequence being defined.

- Consider a variable X initialized to 0, and two concurrent tasks T1
and T2.

- Suppose that T1 assigns a value of 12 to variable X

- Now suppose that T2 divides a local variable by X. The division is shown
as an orange check because T1 can be started before or after T2 (so a
division by zero is possible).

• Data set issue— an orange check resulting from a theoretical set of data.
PolySpace verification considers all combinations of input data rather than
one particular combination (that is, it uses an upper approximation of
the data set). Therefore a check may be colored orange as the result of a
combination of input values which is analyzed by PolySpace, but which will
not be possible at execution time.

- Consider three variables X, Y and Z which can vary between 1 and 1000

- Now suppose that the code computes a value of X*Y*Z on a type 16 bits.
The result can potentially overflow. It may be known when the code is
developed that the variables cant all take the value 1000 at the same
time, but this information is not available to PolySpace software. The
code will be colored orange, accordingly.

• Basic imprecision — an orange check can be due to an imprecise
approximation.

- Consider that X, before the function call, can have the following values:
-5, -3, 8, or any value in range [10...20].

- This means that 0 has been excluded from the set of possible values
for X. Therefore, PolySpace software will approximate X in the range
[-5...20], instead of the previous unions of values, because of
imprecision and optimization.

- In this case, calling the function x = 1/x leads to an orange ZDV.
PolySpace is not able to prove the absence of a run-time error.

9-4

Understanding Orange Checks

Determining Cause of Orange Checks
Consider each of the four categories in turn. Bugs may be revealed by any
category of orange check other than the “Basic imprecision” category.

• Potential bug — An orange check can reveal code which will fail under
some circumstances. The following section describes how to find them.

• Inconclusive verification — Most inconclusive orange checks will take
some time to investigate. An inconclusive orange check may well result
from a very complex situation such that it may take an hour or more to
understand the cause. You may decide to recode in order to be certain that
there is no risk, bearing in mind the criticality of the function and the
required speed of execution.

• Data set issue— It is normally possible to conclude that an orange check
is the result of data set problem in a couple of minutes. You may wish to
comment the code to flag this warning, or alternatively modify the code in
order to take constraints into account.

• Basic imprecision — PolySpace verification cannot help to debug this
code. You may or may not have a problem here, but you will need a
supplementary activity to be sure. Most of the time, a quick code review is
a suitable path to take, perhaps using the Viewers navigation facilities.

9-5

9 Managing Orange Checks

Reducing Orange Checks in Your Results

In this section...

“Options to Reduce Orange Checks” on page 9-6
“Generic Objectives: A Balance Between Precision and Verification Time”
on page 9-7
“Varying the Precision Level” on page 9-8
“Applying Coding Rules to Reduce Orange Checks” on page 9-9
“Increase the Number of Red and Green Checks” on page 9-10
“Applying Function Constraints to Variables Via Stubs” on page 9-10
“Tuning Advanced Parameters” on page 9-12
“Describing Multitasking Behavior Properly” on page 9-12

Options to Reduce Orange Checks
Although PolySpace verification is effective and straightforward to launch
with the minimum of effort, you may find that some applications would benefit
from some code preparation in order to streamline the job of working through
the resulting orange checks. There are four primary approaches which may
be adopted in isolation or in combination.

• Apply coding rules. This is the most efficient means to reduce oranges.

• Implement manual stubbing of previously missing (and therefore
automatically stubbed) functions.

• Specify call sequences with care.

• Constrain some “Applying Function Constraints to Variables Via Stubs”
on page 9-10. Conventional testing verifies a single set of data, whereas
PolySpace software can analyze your module for problems by taking into
account all possible data values. If the range of possible values is specified
more precisely than the default “full range” approach, then there will be
less “noise” in the form of orange checks resulting from “impossible” values.

9-6

Reducing Orange Checks in Your Results

Generic Objectives: A Balance Between Precision
and Verification Time
The methodology objective is quite simple: “To get the most precise results
in the time available”.

PolySpace verification needs to be fast and precise.

• If a verification takes an eternity and the results contain the maximum
possible number of gray, red and green checks, this verification is not useful
because of the time spent waiting for the results.

• If a verification is very quick but contains only orange checks, the
verification wont be very useful because of the large number of manual
checks to be performed.

Using PolySpace verification is a compromise between verification time and
precision. Factors such as the amount of time the developer has to assign to
using PolySpace software, and the stage in the V cycle also influence the
compromise. Consider for example the following scenarios that require the
PolySpace software to be used in different ways:

• Unit testing phase: before going to lunch, a developer starts a verification.
After returning from lunch the developer will analyze PolySpace results for
a maximum of one hour.

• Integration/module testing: before going home, a developer starts a
verification and will spend the next morning analyzing the results.

• Validation/acceptance testing: the developer leaves the office on Friday
evening and starts a verification. The developer will spend the following
week analyzing the results.

Note So verification time and precision depends on how long the developer
wants to wait for the results and the amount of time available to review the
results. It can happen that a verification never ends. The user might need to
split his application.

9-7

9 Managing Orange Checks

Note With knowledge of the tool, users will choose one of the four precision
options, (-O0, -O1, -O2, or -O3) before applying it to their process. It is implicit
that a higher precision will require a longer verification time - but will yield
more red, green and gray code and fewer oranges.

Most of the time, the first verification should use the lowest precision mode.

Note All activities and methods relating to results verification remain
unchanged regardless of the precision selected (-O0, -O1, -O2 or -O3).

Varying the Precision Level
One way to affect precision is to select the algorithm that will be used to model
the cloud of points. The exact method of modelling is managed internally, but
you can influence it by selecting the -O0, -O1, -O2 or -O3 precision level. You
can also select a particular precision for a specific file.

The methods used by PolySpace to represent the data internally are reflected
in the level of precision to be seen in the results. As illustrated below, the
same orange check which results from a low precision verification will become
green when analyzed at a higher precision.

9-8

Reducing Orange Checks in Your Results

Vary the Precision Rate

Applying Coding Rules to Reduce Orange Checks
The number of orange checks per file strongly depends on the coding style
used in the project.

Here is a list of simple rules that allow PolySpace to be more precise and will
higher the selectivity of any Ada verification:

• Use constrained types. Use subtype and not standard type

• Do not use "use at" clause

• Do not use unchecked_conversion

• Minimize the use of big and complex types (record of record, array of
record, etc.)

• Minimize the use of volatile variables,

9-9

9 Managing Orange Checks

• Minimize the use of assembler code.

• Do not mix assembly code and Ada. Gather all assembly code in a
procedure/function which can be automatically stubbed.

Increase the Number of Red and Green Checks
This example shows a header for a missing function (which might occur,
for example, if the code is an incomplete subset of a project). The missing
function copies the value of the src parameter to dest:

procedure a_missing_function
(dest: in out integer,
src : in integer);

Applying fine-level modeling of constraints in primitives and outside functions
at the application periphery will propagate more precision throughout the
application, which will result in a higher selectivity rate (more proven colors,
i.e. more red+ green + gray). For this function, you could just add a simple
body:

procedure a_missing_function
(dest: in out integer,
src : in integer)

begin
dest := src;

end;

In this case, it is obvious that instead of considering the full range for the dest
parameter, PolySpace will consider the relation between input parameter
src and the output parameter, propagating more precision throughout the
application. See the same example in the section of this guide titled “Manual
vs. Automatic Stubbing” on page 5-2.

Applying Function Constraints to Variables Via Stubs
Another way to increase the selectivity is to indicate to the PolySpace software
that some variables (detailed below) might vary between some functional
ranges instead of the full range of the considered type.

This primarily concerns two items from the language:

9-10

Reducing Orange Checks in Your Results

• Parameters passed to functions.

• Variables’ content, mostly globals, which might change from one execution
to another. Typically, these might include things like calibration data or
mission specific data. These variables might be read directly within the
code, or read through an API of functions.

Reduce the cloud of points
Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing
will stub it on the assumption that it can potentially take any value from the
full type of an integer.

Given that PolySpace models data ranges throughout the code it verifies, it
will obviously produce more precise, informative results – provided that the
data it considers from the “outside world” is representative of the data that
can be expected when the code is implemented. There is a certain number
of mechanisms available to model such a data range within the code itself,
and three possible approaches are presented here.

with volatile and assert with assert and without
volatile

without assert, without
volatile, without "if"

function stub return INTEGER is

tmp: INTEGER;

random: INTEGER;

pragma volatile (random);

begin

tmp:= random;

pragma assert (tmp>=1);

pragma assert (tmp<=10);

return tmp;

end;

function random return INTEGER;

pragma Interface (C, random);

function stub return INTEGER is

tmp: INTEGER;

begin

tmp:= random;

pragma assert (tmp>=1);

pragma assert (tmp<=10);

return tmp;

end;

function random return INTEGER;

pragma Interface (C, random);

function stub return INTEGER is

tmp: INTEGER;

begin

tmp:= random;

while (tmp<1 or tmp>10)

loop

tmp:=random;

end loop;

return tmp;

9-11

9 Managing Orange Checks

end;

There is no particular advantage in using one approach or another (except,
perhaps, that the assertions in the first two will usually generate orange
checks) – it is largely down to personal preference.

Tuning Advanced Parameters
There is a compromise to be made to balance the time required to obtain
results, and the precision of those results. Consequently, launching PolySpace
with the following options will allow the time taken for verification to be
reduced but will compromise the precision of the results. It is suggested
that the parameters should be used in the sequence shown - that is, if the
first suggestion does not increase the speed of verification sufficiently then
introduce the second, and so on.

• switch from -O3 to a lower precision, -O2, -O1 or -O0

Describing Multitasking Behavior Properly
The proper description of the asynchronous characteristics of the application
(implicit task declarations, mutual exclusion, critical sections) is necessary if
the best results are to be achieved with the PolySpace software.

Consider two tasks T1 and T2 and a shared variable X set to 0 at initialization
phase:

• T1 sets X to 12

• T2 divides by X

Because the task T1 can be started before or after T2, the division is orange.
Modelling the task differently could turn this orange check green or red.

Refer to “Preparing Multitasking Code” on page 5-15 for a complete description
of tasking facilities. These include:

• Shared variable protection:

- Critical sections,

9-12

Reducing Orange Checks in Your Results

- Mutual exclusion,

- Tasks synchronization,

• Tasking:

- Threads, interruptions,

- Synchronous/asynchronous events,

- Real-time OS.

9-13

9 Managing Orange Checks

Reviewing Orange Checks

In this section...

“Selective Orange Review” on page 9-14
“Performing a Selective Orange Review” on page 9-15
“Exhaustive Orange Review” on page 9-16
“Performing an Exhaustive Orange Review” on page 9-17

Selective Orange Review
A selective orange review is appropriate for the early stages of development,
when you want to improve the quality of your code while it is being developed.
Performing a selective orange review allows you to find the maximum number
of bugs in a short period of time. For example, if you want to spend the first
hour of the day reviewing a verification that was performed overnight. This
type of review is generally supported by more extensive verification as the
project nears completion.

A selective orange review can generally find about 5 bugs (in orange checks)
during an hour of review.

Choosing What to Review
When performing a selective orange review, focus on the modules that have
the highest selectivity in your application, meaning the highest ratio of (green
+ gray + red) / (total number of checks).

If PolySpace verification finds only one or two orange checks in a module
or function, these checks are probably not caused by “basic imprecision.”
Therefore, it is more likely that you will find bugs in these orange checks than
in those found elsewhere in the code.

9-14

Reviewing Orange Checks

Note For each function, PolySpace verification may be better at detecting
some kinds of Runtime Errors than others. For example, one function may
yield precise results for OVFL, but imprecise results for NIV, while a second
function may have the opposite results.

Therefor, you must apply the “high selectivity focus” to each type of error
separately.

Review Oranges Quickly
While performing a selective orange review:

• Spend no more than 5 minutes per orange check.

• Review at least 50 checks an hour.

80% of orange checks require only a few seconds of effort before you can
reach a conclusion. These are not integration bugs, so tracking the cause of
an orange check is often much faster than the same activity in a larger
piece of code.

If you find a check that takes more than a few minutes to understand, it
may be the result of inconclusive PolySpace verification. To maximize the
number of bugs you can find in a limited time, you should move on to another
check. Generally, you should spend no more than 5 minutes on each check,
remembering that your goal is to review at least 50 checks per hour to
maximize the number of bugs found.

Performing a Selective Orange Review
The goal of a selective orange review is to identify the maximum number of
bugs within a short period of time.

To perform a selective orange review:

1 Select one type of RTE, such as Zero Division (ZDV).

2 Click Filter all .

9-15

9 Managing Orange Checks

3 Click the type of check you want to review (ZDV in this example).

4 Identify files containing only 1 or 2 orange checks of the selected type.

5 Using the call tree and dictionary, perform a quick code review on each
orange check, spending no more than 5 minutes on each.

Your goal is to identify whether the orange check is a potential bug,
inconclusive check or data set issue.

If the check proves too complicated to explain quickly, it may well be the
result of basic imprecision.

6 Once you identify the source of the orange check, select the Verified
checkbox in the PolySpace Viewer, and enter an explanation in the
comment field. For example, “inconclusive,” or “data set issue when
calibration of <x> is set greater than 100.”

7 Select another type of RTE and repeat the procedure.

Note You can use the Beta filter to highlight the types of check most
likely to include critical Runtime Errors.

Exhaustive Orange Review
An exhaustive orange review is generally conducted later in the development
process, during the unit testing phase and integration testing phase. The
purpose of an exhaustive orange review is to identify bugs not found during
the selective orange review. The time/cost of performing an exhaustive orange
review needs to be balanced with the cost leaving a bug in the code.

Reviewing each orange check will typically take approximately 4-5 minutes .
400 orange checks will therefore require about four days of code review, and
3,000 orange checks will require 25 days.

9-16

Reviewing Orange Checks

However, if you review the checks as described in the Selective Orange
Review section, the first 80% of checks will take a much smaller amount of
time to review. You can then decide how far you want to pursue reviewing
the remaining checks.

Performing an Exhaustive Orange Review
Performing an exhaustive orange review involves reviewing each orange
check individually. However, there are some general guidelines to follow. In
any hour performing an exhaustive orange review:

• The first 10 minutes will be dedicated to classifying 2/3 of the orange
checks as false anomalies.

• The last 40 minutes will be used to track more complex bugs.

There are sometimes situations where files contain a particularly high
number of orange checks compared with the rest of the application. This may
well highlight design issues.

Consider the possible reasons for an orange check:

• Potential bug and Data set issues

• Inconclusive verification

• Data set issue

• Basic imprecision

Generally, in the modules containing the most orange checks, those checks
will prove inconclusive. If PolySpace verification is unable to draw a
conclusion, the implication is often that the code itself is very complex —
which in turn can identify sections of code of low robustness and quality.

Inconclusive
The most interesting type of inconclusive check is identified when PolySpace
verification states that the code is too complicated. In such a case it is usually
true that most orange checks in the problem file are related, and that patient
navigation will always draw the user back to a same cause — perhaps a
function or a variable modified many times. Experience suggests that such

9-17

9 Managing Orange Checks

situations often focus on functions or variables which have also caused trouble
earlier in the development cycle.

Consider an example below. Suppose that

• a signed is an integer between -2^31 and 2^31-1

• an unsigned is an integer between 0 and 2^32-1

• The variable "Computed_Speed" is copied into a signed, and afterward
into an unsigned, than signed, than added to another variable, and finally
produces 20 orange overflows (OVFL).

There is no scenario identified which leads to a real bug, but perhaps the
development team knows that there was trouble with this variable during
development and the earlier testing phases. PolySpace software has also
found this to be a problem, providing supporting evidence that the code is
poorly designed.

Basic Imprecision
On some rare occasions, a module will contain a lot of basic imprecision due to
approximations made by PolySpace. (For more information, see “Sources of
Orange Checks” on page 9-3 and “Approximations Used During Verification”in
the PolySpace Products for Ada Reference).

In this case, PolySpace verification can only assist by means of the call tree
and dictionary. This code needs to be reviewed by an alternative activity
- perhaps through additional unit tests or code review with the developer.
These checks are usually local to functions, so their impact on the project
as a whole is limited.

Examples of extra activities might be

• Checking an interpolation algorithm in a function

• Checking calibration data consisting of huge constant arrays, which are
manipulated mathematically

9-18

Reviewing Orange Checks

Real Bugs and Data Sets
If the data set analyzed reveals real bugs, they should be corrected If it
highlights potential input bugs (depending on the input data which might
eventually be used) then the source code should be commented.

9-19

9 Managing Orange Checks

9-20

10

Day to Day Use

• “PolySpace In One Click Overview” on page 10-2

• “Using PolySpace In One Click” on page 10-3

10 Day to Day Use

PolySpace In One Click Overview
Most developers verify the same files multiple times (writing new code, unit
testing, integration), and usually need to run verifications on multiple project
files using the same set of options. In a Microsoft Windows environment,
PolySpace In One Click provides a convenient way to streamline your work
when verifying several files using the same set of options.

Once you have set up a project file with the options you want, you designate
that project as the active project, and then send the source files to PolySpace
software for verification. You do not have to update the project with source
file information.

On a Windows systems, the plug-in provides a PolySpace Toolbar in the
Windows Taskbar, and a Send To option on the desktop pop-up menu:

10-2

Using PolySpace® In One Click

Using PolySpace In One Click

In this section...

“PolySpace In One Click Workflow” on page 10-3
“Setting the Active Project” on page 10-3
“Launching Verification” on page 10-5
“Using the Taskbar Icon” on page 10-9

PolySpace In One Click Workflow
Using PolySpace In One Click involves two steps:

1 Setting the active project.

2 Sending files to PolySpace software for verification.

Setting the Active Project
The active project is the project that PolySpace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. PolySpace software uses the analysis
options from the project; it does not use the source files or results directory
from the project.

To set the active project:

1 Right-click the PolySpace In One Click icon in the taskbar area of your
Windows desktop:

The context menu appears.

10-3

10 Day to Day Use

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

10-4

Using PolySpace® In One Click

3 Select the project you want to use as the active project.

4 Click Open to apply the changes and close the dialog box.

Launching Verification
PolySpace in One Click allows you to send multiple files to PolySpace software
for verification.

To send a file to PolySpace software for verification:

1 Navigate to the directory containing the source files you want to verify.

2 Right-click the file you want to verify.

10-5

10 Day to Day Use

The context menu appears.

3 Select Send To > PolySpace.

10-6

Using PolySpace® In One Click

The PolySpace basic settings dialog box appears.

10-7

10 Day to Day Use

Note The options you specify the basic settings dialog box override any
options set in the configuration file. These options are also preserved
between verifications.

4 Enter the appropriate parameters for your verification.

5 Leave the default values for the other parameters.

6 Click Execute.

The verification starts and the verification log appears.

10-8

Using PolySpace® In One Click

Using the Taskbar Icon
The PolySpace in One Click Taskbar icon allows you to access various
software features.

10-9

10 Day to Day Use

Click the PolySpace Taskbar Icon, then select one of the following options:

• Set active project— Allows you to set the active configuration file. Before
you start, you have to choose a PolySpace configuration file which contains
the common options. You can choose a template of a previous project and
move it to your working directory.

A standard file browser allows you to choose the configuration file. If you
have multiple configuration files, you can quickly switch between them
using the browse history.

10-10

Using PolySpace® In One Click

Note No configuration file is selected by default. You can create an empty
file with a .cfg extension.

• Open active project — Opens the active configuration file. This allows
you to update the project using the standard PolySpace Launcher graphical
interface. It allows you to specify all PolySpace common options, including
directives of compilation, options, and paths of standard and specific
headers. It does not affect the precision of a verification or the results
directory.

• Viewer — Opens the PolySpace viewer. This allows you to review
verification results in the standard graphical interface. In order to load
results into the viewer, you must choose a verification to review in the
Verification Log window.

• Launcher— Opens the PolySpace Launcher. This allows you to launch a
verification using the standard PolySpace graphical interface.

• Spooler — Opens the PolySpace Spooler. If you selected a server
verification in the “PolySpace Preferences” dialog box, the spooler allows
you to follow the status of the verification.

10-11

10 Day to Day Use

10-12

Glossary

Glossary

Atomic
In computer programming, the adjective atomic describes a unitary
action or object that is essentially indivisible, unchangeable, whole,
and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of PolySpace from the command line rather than via the
Launcher GUI.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision.

Certain error
See ”red check.”

Check
A test performed by PolySpace during a verification and subsequently
colored red, orange, green or gray in the viewer.

Code Verification
The PolySpace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Dead Code
Code which is inaccessible at execution time under all circumstances
due to the logic of the software executed prior to it.

Development Process
The process used within a company to progress through the software
development lifecycle.

Green check
Code has been proven to be free of runtime errors.

Glossary-1

Glossary

Gray check
Unreachable code; dead code.

Imprecision
Approximations are made during a PolySpace verification, so data
values possible at execution time are represented by supersets including
those values.

Orange check
A warning that represents a possible error which may be revealed upon
further investigation.

PolySpace Approach
The manner of use of PolySpace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
A verification which includes few inconclusive orange checks is said
to be precise

Progress text
Output from PolySpace during verification that indicates what
proportion of the verification has been completed. Could be considered
to be a “textual progress bar”.

Red check
Code has been proven to contain definite runtime errors (every execution
will result in an error).

Review
Inspection of the results produced by a PolySpace verification.

Scaling option
Option applied when an application submitted to PolySpace Server
proves to be bigger or more complex than is practical.

Selectivity
The ratio (green checks + gray checks + red checks) / (total amount of
checks)

Glossary-2

Glossary

Unreachable code
Dead code.

Verification
The PolySpace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Glossary-3

Glossary

Glossary-4

Index

IndexA
active project

definition 10-3
setting 10-3

analysis options 3-15
assistant mode

criterion 8-20
custom methodology 8-23
methodology 8-20
methodology for Ada 8-20 to 8-21
overview 8-19
reviewing checks 8-24
selection 8-19
use 8-19 8-24

C
call graph 8-28
call tree view 8-11
calling sequence 8-28
cfg. See configuration file
client 1-5 6-2

installation 1-6
verification on 6-19

Client
overview 1-6

coding review progress view 8-11 8-29
color-coding of verification results 1-3 8-13
compile

log 7-6
compile log

Launcher 6-21
Spooler 6-5

compile phase 6-3
composite filters 8-34
configuration file

definition 3-2
custom methodology

definition 8-23

D
default directory

changing in preferences 3-6
desktop file

definition 3-2
directories

includes 3-10 3-12 3-14
results 3-10 3-12 3-14
sources 3-10 3-12 3-14

downloading
results 8-8

dsk. See desktop file

E
expert mode

filters 8-33
composite 8-34
individual 8-34

overview 8-26
selection 8-26
use 8-26

F
files

includes 3-10 3-12 3-14
results 3-10 3-12 3-14
source 3-10 3-12 3-14

filters 8-33
alpha 8-34
beta 8-34
custom

modification 8-34 to 8-35
use 8-34 to 8-35

gamma 8-34
individual 8-34
user def 8-34

Index-1

Index

H
hardware requirements 7-2
help

accessing 1-8

I
installation

PolySpace Client for Ada 1-6
PolySpace products 1-6
PolySpace Server for Ada 1-6

L
Launcher 1-5

monitoring verification progress 6-21
opening 3-3
starting verification on client 6-19
starting verification on server 6-3
viewing logs 6-21
window 3-3

overview 3-3
progress bar 6-21

logs
compile

Launcher 6-21
Spooler 6-5

full
Launcher 6-21
Spooler 6-5

stats
Launcher 6-21
Spooler 6-5

viewing
Launcher 6-21
Spooler 6-5

M
methodology for Ada 8-20 to 8-21

P
PolySpace Client

overview 1-6
PolySpace Client for Ada

installation 1-6
PolySpace In One Click

active project 10-3
overview 10-2
sending files to PolySpace software 10-5
starting verification 10-5
use 10-2

PolySpace products for Ada
components 1-5
installation 1-6
overview 1-2
user interface 1-5

PolySpace products for C/C++
related products 1-6

PolySpace Queue Manager Interface. See Spooler
PolySpace Server

overview 1-6
PolySpace Server for Ada

installation 1-6
preferences

Launcher
default directory 3-6
default server mode 6-3
server detection 7-3

Viewer
assistant configuration 8-21
display columns in RTE view 8-30

procedural entities view 8-11
reviewed column 8-30

product overview 1-2
progress bar

Launcher window 6-21
project

creation 3-2
definition 3-2
directories

Index-2

Index

includes 3-3
results 3-3
sources 3-3

file types
configuration file 3-2
desktop file 3-2

saving 3-17

R
related products 1-6

PolySpace products for linking to Models 1-7
PolySpace products for verifying C code 1-6
PolySpace products for verifying C++

code 1-6
reports

generation 8-37
results

directory 3-10 3-12 3-14
downloading from server 8-8
opening 8-11
report generation 8-37

reviewed column 8-30
rte view. See procedural entities view

S
selected check view 8-11
server 1-5 6-2

detection 7-3
information in preferences 7-3
installation 1-6 7-3
verification on 6-3

Server
overview 1-6

source code view 8-11
Spooler 1-5

monitoring verification progress 6-5
removing verification from queue 8-8
use 6-5

viewing log 6-5

T
troubleshooting failed verification 7-2

V
variables view 8-11
verification

Ada code 1-2
C code 1-6
C++ code 1-6
client 6-2
compile phase 6-3
failed 7-2
monitoring progress

Launcher 6-21
Spooler 6-5

phases 6-3
results

color-coding 1-3
opening 8-11
report generation 8-37
reviewing 8-8

running 6-2
running on client 6-19
running on server 6-3
starting

from Launcher 6-2 to 6-3 6-19
from PolySpace In One Click 6-2 10-5

stopping 6-22
troubleshooting 7-2

Viewer 1-5
modes

selection 8-15
opening 8-11
window

call tree view 8-11
coding review progress view 8-11

Index-3

Index

overview 8-11
procedural entities view 8-11
selected check view 8-11

source code view 8-11
variables view 8-11

Index-4

	toc
	Introduction to PolySpace Products
	Introduction to PolySpace Products
	The Value of PolySpace Verification
	Ensure Software Reliability
	Decrease Development Time
	Improve the Development Process

	How PolySpace Verification Works
	What is Static Verification
	Exhaustiveness

	Product Components
	PolySpace Client for Ada Software
	PolySpace Server for Ada Software

	Installing PolySpace Products
	Related Products
	PolySpace Products for Verifying C and C++ Code
	PolySpace Products for Linking to Models

	PolySpace Documentation
	About this Guide
	Related Documentation
	The MathWorks Online

	Choosing How to Use PolySpace Software
	How to Use This Chapter
	Applying PolySpace Verification to Your Development Process
	Overview of the PolySpace Approach
	When No Coding Rules Are Adopted
	When Coding Rules Have Been Adopted
	In a Certification Context
	As an Acceptance Tool

	Standard Development Process
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach
	A Complementary Approach
	Integration with Configuration Management Tools
	Costs and Benefits

	Rigorous Development Process: Introducing Tools and Coding Rules
	Overview
	The Software Development Process
	The PolySpace Approach
	A Complementary Approach
	Costs and Benefits

	A Quality/Qualification Approach
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach
	Costs and Benefits

	Code Acceptance Criterion
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach

	Choosing the Type of Verification You Want to Perform

	Setting Up a Verification Project
	Creating a Project
	What Is a Project?
	Project Directories
	Opening PolySpace Launcher
	Specifying Default Directory
	Creating New Projects
	Opening Existing Projects
	Specifying Source Files
	Specifying Include Directories
	Specifying Results Directory
	Specifying Analysis Options
	Configuring Text and XML Editors
	Saving the Project

	Emulating Your Runtime Environment
	Setting Up a Target
	Target/Compiler Overview
	Specifying Target/Compilation Parameters
	Predefined Target Processor Specifications (size of char, int, f

	Verifying an Application Without a “Main”
	Main Generator Overview
	Automatically Generating a Main
	Manually Generating a Main
	Example

	Using Pragma Assert to Set Data Ranges
	Example

	Preparing Source Code for Verification
	Stubbing
	Stubbing Overview
	Manual vs. Automatic Stubbing
	Deciding which Stub Functions to Provide
	Example
	Summary

	Automatic Stubbing
	Problem
	Explanation
	Solution

	Preparing Code for Variables
	Float Rounding
	Expansion of Sizes
	Example
	Volatile Variables
	Problem
	Explanation

	Shared Variables
	Abstract
	Explanation
	Solution
	Critical Sections
	Mutual Exclusion
	Rendezvous
	Semaphores

	Preparing Multitasking Code
	PolySpace Software Assumptions
	Scheduling Model
	Example
	Launching Command
	Limitation

	Modelling Synchronous Tasks
	Problem
	Explanation
	Solution 1
	Solution 2

	Interruptions and Asynchronous Events/Tasks
	Problem
	Explanation
	My interrupts it1 and it2 cannot preempt each other
	My interruptions can preempt each other

	Are Interruptions Maskable or Preemptive by Default?
	Problem
	Explanation
	Solution
	Original Packages
	Extra Packages
	Command Line to Launch PolySpace Viewer

	Mailboxes
	Problem
	Explanation
	Solution
	package mailboxes
	package body mailboxes
	procedure receive
	task body task_1

	Atomicity
	Definitions
	Instructional Decomposition
	Critical Sections

	Priorities

	Running a Verification
	Types of Verification
	Running Verifications on PolySpace Server
	Starting Server Verification
	What Happens When You Run Verification
	Managing Verification Jobs Using the PolySpace Queue Manager
	Monitoring Progress of Server Verification
	Viewing Verification Log File on Server
	Stopping Server Verification Before It Completes
	Removing Verification Jobs from Server Before They Run
	Changing Order of Verification Jobs in Server Queue
	Purging Server Queue
	Changing Queue Manager Password
	Sharing Server Verifications Between Users
	Security of Jobs in Server Queue
	analysis-keys.txt File
	Example:
	Sharing Verifications Between Accounts
	Magic Key to Share Verifications
	If analysis-keys.txt File is Lost or Corrupted

	Running Verifications on PolySpace Client
	Starting Verification on Client
	What Happens When You Run Verification
	Monitoring the Progress of the Verification
	Stopping Client Verification Before It Completes

	Running Verifications from Command Line
	Launching Verifications in Batch
	Managing Verifications in Batch

	Troubleshooting Verification Problems
	Verification Process Failed Errors
	Overview
	Hardware Does Not Meet Requirements
	You Did Not Specify the Location of Included Files
	PolySpace Software Cannot Find the Server
	Limit on Assignments and Function Calls

	Compile Errors
	Overview
	Examining the Compile Log
	Unit Verification

	Reducing Verification Time
	PolySpace Verification Duration
	An Ideal Application Size
	Why Should there be an Optimum Size?
	Selecting a Subset of Code
	Example 1
	Example 2
	Example 3
	Some Consequences
	Typical Examples of Removable Components, According to the Logic
	Subdivide According to Data-Flow
	Subdivide According to Real-Time Characteristics
	Subdivide According to Files

	What are the Benefits of these Methods?
	When the Application is Incomplete
	Considering the Effects of Application Code Size

	Reviewing Verification Results
	Before You Review PolySpace Results
	Overview: Understanding PolySpace Results
	Why Gray Follows Red and Green Follows Orange
	Summary

	What is the Message and What does it Mean?
	Explanation
	Summary

	What is the Ada Explanation?

	Opening Verification Results
	Downloading Results from Server to Client
	Opening Verification Results
	Exploring the Viewer Window
	Overview
	Procedural Entities View

	Selecting Viewer Mode
	Setting Character Encoding Preferences

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Exploring Methodology for Ada
	Defining a Custom Methodology
	Reviewing Checks

	Reviewing Results in Expert Mode
	What Is Expert Mode?
	Switching to Expert Mode
	Selecting a Check to Review
	Displaying the Calling Sequence
	Tracking Review Progress
	Making the Reviewed Column Visible
	Filtering Checks
	Types of Filters
	Individual Filters
	Composite Filters
	Custom Filters

	Creating a Custom Filter

	Generating Reports of Verification Results
	Using PolySpace Results
	Review Runtime Errors: Fix Red Errors
	Review Dead Code Checks: Why Gray Code is Interesting
	Functional Bugs Can Be Found in Gray Code
	Structural Coverage

	Reviewing Orange: Automatic Methodology
	Example
	Selective Orange Review: Finding the Maximum Number of Bugs in O
	Choosing What to Review
	Reviewing Oranges Quickly
	Performing a Selective Orange Review

	Exhaustive Orange Review at Unit Phase
	Exhaustive Orange Review at Integration Phase
	Cost
	Method

	Integration Bug Tracking
	How to Find Bugs in Unprotected Shared Data
	Dataflow Verification
	Potential Side Effect of a Red Error
	Checks on Procedure Calls with Default Parameters
	Example
	Explanation

	_INIT_PROC Procedures
	Example
	Explanation

	Managing Orange Checks
	Understanding Orange Checks
	What is an Orange Check?
	Sources of Orange Checks
	Determining Cause of Orange Checks

	Reducing Orange Checks in Your Results
	Options to Reduce Orange Checks
	Generic Objectives: A Balance Between Precision and Verification
	Varying the Precision Level
	Applying Coding Rules to Reduce Orange Checks
	Increase the Number of Red and Green Checks
	Applying Function Constraints to Variables Via Stubs
	Reduce the cloud of points

	Tuning Advanced Parameters
	Describing Multitasking Behavior Properly

	Reviewing Orange Checks
	Selective Orange Review
	Choosing What to Review
	Review Oranges Quickly

	Performing a Selective Orange Review
	Exhaustive Orange Review
	Performing an Exhaustive Orange Review
	Inconclusive
	Basic Imprecision
	Real Bugs and Data Sets

	Day to Day Use
	PolySpace In One Click Overview
	Using PolySpace In One Click
	PolySpace In One Click Workflow
	Setting the Active Project
	Launching Verification
	Using the Taskbar Icon

	Glossary
	Index

